Many real-world IoT systems comprising various internet-connected sensory devices generate substantial amounts of multivariate time series data. Meanwhile, those critical IoT infrastructures, such as smart power grids and water distribution networks, are often targets of cyber-attacks, making anomaly detection of high research value. However, considering the complex topological and nonlinear dependencies that are initially unknown among sensors, modeling such relatedness is inevitable for any efficient and accurate anomaly detection system. Additionally, due to multivariate time series' temporal dependency and stochasticity, their anomaly detection remains a big challenge. This work proposed a novel framework, namely GTA, for multivariate time series anomaly detection by automatically learning a graph structure followed by the graph convolution and modeling the temporal dependency through a Transformer-based architecture. The core idea of learning graph structure is called the connection learning policy based on the Gumbel-softmax sampling strategy to learn bi-directed associations among sensors directly. We also devised a novel graph convolution named Influence Propagation convolution to model the anomaly information flow between graph nodes. Moreover, we proposed a multi-branch attention mechanism to substitute for original multi-head self-attention to overcome the quadratic complexity challenge. The extensive experiments on four public anomaly detection benchmarks further demonstrate our approach's superiority over other state-of-the-arts.
翻译:由各种互联网连接的感官装置组成的许多真实世界的 IoT 系统产生大量多变时间序列数据。 同时,这些关键的 IoT 基础设施,如智能电网和水分配网络,往往成为网络攻击的目标,使异常点发现高研究价值。然而,考虑到传感器最初并不为人所知的复杂的地表和非线性依赖性,为这种关联性建模对于任何有效和准确的异常探测系统都是不可避免的。此外,由于多变时间序列的时间序列的时间依赖性和随机性,它们的异常点探测仍是一个巨大的挑战。这项工作提出了一个新的框架,即GTA, 用于多变时间序列异常点探测, 自动学习图形变异图结构之后的图形结构,并通过一个基于变异体结构的模型来模拟时间依赖性。 学习图结构的核心理念称为基于Gumbel- softmax取样战略的连接性学习政策,以直接学习传感器之间的双向联系。 我们还设计了一个名为Iglect Propagation 共变换模型, 即GTTA, 通过自动学习图形节点的图形节点的图形节点的图形节流, 并展示了我们最初的多变式的多变式的多变式的自我探测法式的自我测试方法, 展示了另一个的多重变式的多重变式的自我定位式的演示式的演示式的演示式的演示式的自我探测式的自我定位。