The collection of data on populations of networks is becoming increasingly common, where each data point can be seen as a realisation of a network-valued random variable. A canonical example is that of brain networks: a typical neuroimaging study collects one or more brain scans across multiple individuals, each of which can be modelled as a network with nodes corresponding to distinct brain regions and edges corresponding to structural or functional connections between these regions. Most statistical network models, however, were originally proposed to describe a single underlying relational structure, although recent years have seen a drive to extend these models to populations of networks. Here, we propose one such extension: a multilevel framework for populations of networks based on exponential random graph models. By pooling information across the individual networks, this framework provides a principled approach to characterise the relational structure for an entire population. To perform inference, we devise a novel exchange-within-Gibbs MCMC algorithm that generates samples from the doubly-intractable posterior. To illustrate our framework, we use it to assess group-level variations in networks derived from fMRI scans, enabling the inference of age-related differences in the topological structure of the brain's functional connectivity.


翻译:收集网络人口的数据越来越普遍,每个数据点可被视为网络价值随机变量的实现。一个典型的例子就是大脑网络:典型的神经成像研究收集了多种人之间的一个或多个脑扫描,其中每一个都可模拟成一个网络,与不同的大脑区域和与这些区域的结构或功能联系相对应的边缘相对应的节点相对应。然而,大多数统计网络模型最初都是为了描述单一的基本关系结构,尽管近年来我们看到了将这些模型扩大到网络人口的一种动力。我们在这里提议了一个这样的扩展:一个基于指数随机图表模型的网络人口多层次框架。通过将信息汇集到各个单独的网络,这个框架提供了一种原则性的方法来描述整个人口的关系结构。为了作出推断,我们设计了一个新型的Gibbbs内部的MC算法,从极易吸引的远地点生成样本。为了说明我们的框架,我们用它来评估从FMRI扫描中得出的网络在群体层次上的变异,从而能够推断出与大脑顶层结构的功能性年龄结构的连通性。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
53+阅读 · 2020年10月11日
【ST2020硬核课】深度神经网络,57页ppt
专知会员服务
45+阅读 · 2020年8月19日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
专知会员服务
60+阅读 · 2020年3月19日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
119+阅读 · 2019年12月9日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月3日
Arxiv
38+阅读 · 2020年12月2日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
19+阅读 · 2018年6月27日
VIP会员
相关VIP内容
专知会员服务
53+阅读 · 2020年10月11日
【ST2020硬核课】深度神经网络,57页ppt
专知会员服务
45+阅读 · 2020年8月19日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
专知会员服务
60+阅读 · 2020年3月19日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
119+阅读 · 2019年12月9日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员