In this paper, we synthesize a machine-learning stacked ensemble model a vector of which predicts the optimal topology of a robot network. This problem is technically a multi-task classification problem. However, we divide it into a class of multi-class classification problems that can be more efficiently solved. For this purpose, we first compose an algorithm to create ground-truth topologies associated with various configurations of a robot network. This algorithm incorporates a complex collection of nonlinear optimality criteria that our learning model successfully manages to learn. Then, we propose a stacked ensemble model whose output is the topology prediction for the particular robot associated with it. Each stacked ensemble instance constitutes three low-level estimators whose outputs will be aggregated by a high-level boosting blender. The results of the simulations, applying our model to a network of 10 robots, represents over %80 accuracy in the prediction of optimal topologies corresponding to various configurations of this complex optimal topology learning problem.
翻译:在本文中, 我们合成了一个机器学习的堆叠组合模型, 一个矢量可以预测机器人网络的最佳地形。 这个问题在技术上是一个多任务分类问题。 但是, 我们把它分成一组可以更高效解决的多级分类问题。 为此, 我们首先计算出一种算法, 以创建与机器人网络的各种配置相关的地面真象。 这个算法包含一个复杂的非线性最佳性标准集, 我们学习模型成功学习了这些标准。 然后, 我们提出一个堆叠式共同性模型, 其输出是与此相关的特定机器人的地形预测。 每个堆叠式共性实例由三个低级别的估计者组成, 其输出将由高层次的振动搅拌器汇总。 模拟的结果, 将我们的模型应用到一个由10个机器人组成的网络中, 代表了与这一复杂最佳地形学习问题的各种配置相对应的最佳地形的预测的精确度超过% 80 。