The density weighted average derivative (DWAD) of a regression function is a canonical parameter of interest in economics. Classical first-order large sample distribution theory for kernel-based DWAD estimators relies on tuning parameter restrictions and model assumptions leading to an asymptotic linear representation of the point estimator. Such conditions can be restrictive, and the resulting distributional approximation may not be representative of the underlying sampling distribution of the statistic of interest, in particular not being robust to bandwidth choices. Small bandwidth asymptotics offers an alternative, more general distributional approximation for kernel-based DWAD estimators that allows for, but does not require, asymptotic linearity. The resulting inference procedures based on small bandwidth asymptotics were found to exhibit superior finite sample performance in simulations, but no formal theory justifying that empirical success is available in the literature. Employing Edgeworth expansions, this paper shows that small bandwidth asymptotics lead to inference procedures with demonstrable superior higher-order distributional properties relative to procedures based on asymptotic linear approximations.
翻译:回归函数的密度加权平均衍生物(DWAD)是一个引人关注经济学的典型参数。对于以内核为基础的 DWAD 测算员来说,典型的一阶大样本分布理论依赖于调制参数限制和模型假设,导致点测算仪的无症状线性表示。这些条件可能是限制性的,因此产生的分布近似值可能不能代表利益统计的基本抽样分布,特别是对于带宽选择而言不够强。小型带宽的测试器为内核的 DWAD 测算器提供了一种替代的、更普遍的分布近似,允许但并不要求无症状线性。由此形成的基于小带宽的测算器的推论程序在模拟中表现出较优的有限样本性能,但在文献中没有正式的理论可以证明经验成功。使用Edgeworth的扩展,本文表明,小带宽可导致推论程序,与基于无症状直线性直线性直线性的程序相比,其明显的更高顺序分布属性。