Certain applications that analyze damping effects require the solution of quadratic eigenvalue problems (QEPs). We use refined isogeometric analysis (rIGA) to solve quadratic eigenproblems. rIGA discretization, while conserving desirable properties of maximum-continuity isogeometric analysis (IGA), reduces the interconnection between degrees of freedom by adding low-continuity basis functions. This connectivity reduction in rIGA's algebraic system results in faster matrix LU factorizations when using multifrontal direct solvers. We compare computational costs of rIGA versus those of IGA when employing Krylov eigensolvers to solve quadratic eigenproblems arising in 2D vector-valued multifield problems. For large problem sizes, the eigencomputation cost is governed by the cost of LU factorization, followed by costs of several matrix-vector and vector-vector multiplications, which correspond to Krylov projections. We minimize the computational cost by introducing C^0 and C^1 separators at specific element interfaces for our rIGA generalizations of the curl-conforming Nedelec and divergence-conforming Raviart-Thomas finite elements. Let p be the polynomial degree of basis functions; the LU factorization is up to O((p-1)^2) times faster when using rIGA compared to IGA in the asymptotic regime. Thus, rIGA theoretically improves the total eigencomputation cost by O((p-1)^2) for sufficiently large problem sizes. Yet, in practical cases of moderate-size eigenproblems, the improvement rate deteriorates as the number of computed eigenvalues increases because of multiple matrix-vector and vector-vector operations. Our numerical tests show that rIGA accelerates the solution of quadratic eigensystems by O(p-1) for moderately sized problems when we seek to compute a reasonable number of eigenvalues.
翻译:某些应用程序,这些应用程序可以分析偏差效应,从而需要解决二次偏差性二次元值问题(QEPs) 。我们使用精细的异位数分析(rIGA) 来解决二次二次元问题。 RIGA 分解,同时保存最大连续性异度同位数分析(IGA) 的适当属性,通过添加低连续基功能来降低自由度之间的相互联系。 使用多前方直接解决方案, RIGA 的代数中中位中位数系数化速度更快。 当使用 Krylov 和 IGA 的计算成本, 我们用 RIGA 的异位数中位数计算成本比较 RIGA 和 IGA 的计算成本。 在2DO 矢量值中, 将我们IGA 的直位数和矢量变数变数的计算成本通过直位数的直位数进行最小化, 将我们IGA 的直位数的直位数- RIGO 的计算成本最小化, 当我们使用直位数的直位数的直位数的直位数的直位数的内, 直位数的直位值平基的内, 直位值变数的内, 直位值变变数的直位值的内, 直位数的内值函数将我们O。