We present Natural Gradient Boosting (NGBoost), an algorithm for generic probabilistic prediction via gradient boosting. Typical regression models return a point estimate, conditional on covariates, but probabilistic regression models output a full probability distribution over the outcome space, conditional on the covariates. This allows for predictive uncertainty estimation --- crucial in applications like healthcare and weather forecasting. NGBoost generalizes gradient boosting to probabilistic regression by treating the parameters of the conditional distribution as targets for a multiparameter boosting algorithm. Furthermore, we show how the \emph{Natural Gradient} is required to correct the training dynamics of our multiparameter boosting approach. NGBoost can be used with any base learner, any family of distributions with continuous parameters, and any scoring rule. NGBoost matches or exceeds the performance of existing methods for probabilistic prediction while offering additional benefits in flexibility, scalability, and usability.
翻译:我们提出自然梯度推力(NGBoost),这是一种通过梯度推力进行一般概率预测的算法。典型回归模型返回一个点估计值,以共差为条件,但概率回归模型则以共差为条件,在结果空间上产生完全概率分布。这样可以预测不确定性估计 -- -- 在保健和天气预报等应用中至关重要。NGBost一般地使用梯度,将有条件分布参数作为多参数推力算法的目标,从而刺激概率回归。此外,我们展示了需要什么\emph{Natural Gradient}来纠正我们多参数推力方法的培训动态。NGBoost可以与任何基础学习者一起使用,任何配有连续参数的分布组合,以及任何得分规则。NGBoost在灵活性、可缩放性和可用性方面与现有概率预测方法相匹配或超过。