In this paper, the problem of full state approximation by model reduction is studied for stochastic and bilinear systems. Our proposed approach relies on identifying the dominant subspaces based on the reachability Gramian of a system. Once the desired subspace is computed, the reduced order model is then obtained by a Galerkin projection. We prove that, in the stochastic case, this approach either preserves mean square asymptotic stability or leads to reduced models whose minimal realization is mean square asymptotically stable. This stability preservation guarantees the existence of the reduced system reachability Gramian which is the basis for the full state error bounds that we derive. This error bound depends on the neglected eigenvalues of the reachability Gramian and hence shows that these values are a good indicator for the expected error in the dimension reduction procedure. Subsequently, we establish the stability preservation result and the error bound for a full state approximation to bilinear systems in a similar manner. These latter results are based on a recently proved link between stochastic and bilinear systems. We conclude the paper by numerical experiments using a benchmark problem. We compare this approach with balanced truncation and show that it performs well in reproducing the full state of the system. \end{abstract}


翻译:在本文中,通过模型削减而完全接近状态的问题正在为随机和双线系统进行研究。 我们建议的方法取决于根据系统的可达性确定主要亚空间。 一旦计算了理想的亚空间, 则由Galerkin投影获得降序模型。 我们证明, 在随机情况下, 这种方法要么保持平方无损性稳定, 要么导致模型降低, 其实现程度最低为平均平方无损稳定。 这种稳定性保护保证了系统可达性降低的格拉米安的存在, 这是我们得出的全部状态误差的基础。 这一误差取决于被忽略的可达性易达性电子数值, 从而表明这些数值是维度削减程序预期错误的好指标。 随后, 我们以类似的方式建立稳定性结果, 并导致完全状态近似双线系统。 后一种结果以最近证明的可达性系统和双线系统之间的联系为基础。 我们通过使用基准问题的数字实验来完成该文件。 我们用这个平衡的轨迹对这个方法进行对比, 并用完全的轨迹进行测试。

0
下载
关闭预览

相关内容

如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
专知会员服务
50+阅读 · 2020年12月14日
【DeepMind】强化学习教程,83页ppt
专知会员服务
153+阅读 · 2020年8月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Exact Stochastic Second Order Deep Learning
Arxiv
0+阅读 · 2021年4月8日
VIP会员
相关VIP内容
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
专知会员服务
50+阅读 · 2020年12月14日
【DeepMind】强化学习教程,83页ppt
专知会员服务
153+阅读 · 2020年8月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Top
微信扫码咨询专知VIP会员