We develop and study a time-space discrete discontinuous Galerkin finite elements method to approximate the solution of one-dimensional nonlinear wave equations. We show that the numerical scheme is stable if a nonuniform time mesh is considered. We also investigate the blow-up phenomena and we prove that under weak convergence assumptions, the numerical blow-up time tends toward the theoretical one. The validity of our results is confirmed throughout several numerical examples and benchmarks.
翻译:我们开发并研究一种时间空间离散不连续的 Galerkin 有限元素方法, 以近似单维非线性波等式的解决方案。 我们显示, 如果考虑的是非统一时间网格, 数字方案是稳定的。 我们还调查了爆炸现象, 我们证明, 在衰弱的趋同假设下, 数字打击时间倾向于理论。 我们的结果的有效性通过几个数字例子和基准得到了确认 。