We study the fully dynamic maximum matching problem. In this problem, the goal is to efficiently maintain an approximate maximum matching of a graph that is subject to edge insertions and deletions. Our focus is particularly on algorithms that maintain the edges of a $(1-\epsilon)$-approximate maximum matching for an arbitrarily small constant $\epsilon > 0$. Until recently, the fastest known algorithm for this problem required $\Theta(n)$ time per update where $n$ is the number of vertices. This bound was slightly improved to $n/(\log^* n)^{\Omega(1)}$ by Assadi, Behnezhad, Khanna, and Li [STOC'23] and very recently to $n/2^{\Omega(\sqrt{\log n})}$ by Liu [ArXiv'24]. Whether this can be improved to $n^{1-\Omega(1)}$ remains a major open problem. In this paper, we present a new algorithm that maintains a $(1-\epsilon)$-approximate maximum matching. The update-time of our algorithm is parametrized based on the density of a certain class of graphs that we call Ordered Ruzsa-Szemer\'edi (ORS) graphs, a generalization of the well-known Ruzsa-Szemer\'edi graphs. While determining the density of ORS (or RS) remains a hard problem in combinatorics, we prove that if the existing constructions of ORS graphs are optimal, then our algorithm runs in $n^{1/2+O(\epsilon)}$ time for any fixed $\epsilon > 0$ which would be significantly faster than existing near-linear in $n$ time algorithms. Our second main contribution is a better upper bound on density of both ORS and RS graphs with linear size matchings. The previous best upper bound was due to a proof of the triangle-removal lemma from more than a decade ago due to Fox [Annals of Mathematics '11].
翻译:暂无翻译