Multivariate analysis-of-variance (MANOVA) is a well established tool to examine multivariate endpoints. While classical approaches depend on restrictive assumptions like normality and homogeneity, there is a recent trend to more general and flexible proce dures. In this paper, we proceed on this path, but do not follow the typical mean-focused perspective. Instead we consider general quantiles, in particular the median, for a more robust multivariate analysis. The resulting methodology is applicable for all kind of factorial designs and shown to be asymptotically valid. Our theoretical results are complemented by an extensive simulation study for small and moderate sample sizes. An illustrative data analysis is also presented.
翻译:多变量分析(MANOVA)是研究多变量端点的既定工具。 传统方法取决于常规性和同质性等限制性假设, 传统方法则取决于常规性和同质性等限制性假设, 但最近出现了更普遍、 更灵活的 proce dures 的趋势 。 在本文中, 我们沿着这条道路前进, 但没有遵循典型的以平均为重点的视角 。 相反, 我们考虑一般量化, 特别是中位数, 以进行更强有力的多变量分析 。 由此产生的方法适用于所有类型的要素设计, 并显示其具有同等效力 。 我们的理论结果得到了对中小样本大小的广泛模拟研究的补充 。 同时还提供了说明性的数据分析 。