We study the asymptotic normality of two estimators of the integrated volatility of volatility based on the Fourier methodology, which does not require the pre-estimation of the spot volatility. We show that the bias-corrected estimator reaches the optimal rate $n^{1/4}$, while the estimator without bias-correction has a slower convergence rate and a smaller asymptotic variance. Additionally, we provide simulation results that support the theoretical asymptotic distribution of the rate-efficient estimator and show the accuracy of the Fourier estimator in comparison with a rate-optimal estimator based on the pre-estimation of the spot volatility. Finally, we reconstruct the daily volatility of volatility of the S&P500 and EUROSTOXX50 indices over long samples via the rate-optimal Fourier estimator and provide novel insight into the existence of stylized facts about its dynamics.
翻译:我们根据 Fourier 方法研究两个综合波动性估计值的无症状常态性,这个方法不需要预先估计点波动性。我们显示,偏差修正估计值达到最佳速率$ ⁇ 1/4 美元,而没有偏差校正的估测器的趋同率较慢,零差较小。此外,我们提供模拟结果,支持节率估量器的理论无症状分布,并显示Fourier 估量器与基于预估点波动性的速率-最佳估测器相比的准确性。最后,我们通过速率-最佳Fourier 估量器重建S&P500 和 EUROSTOXX50 指数在长样本上的每日波动性。我们通过速率-最佳Fourier 估量器重建S&P500 和 EUROSTOXX50 指数在长样本上的每日波动性,并提供关于其动态的典型事实存在的新洞察。