With the 2022 US midterm elections approaching, conspiratorial claims about the 2020 presidential elections continue to threaten users' trust in the electoral process. To regulate election misinformation, YouTube introduced policies to remove such content from its searches and recommendations. In this paper, we conduct a 9-day crowd-sourced audit on YouTube to assess the extent of enactment of such policies. We recruited 99 users who installed a browser extension that enabled us to collect up-next recommendation trails and search results for 45 videos and 88 search queries about the 2020 elections. We find that YouTube's search results, irrespective of search query bias, contain more videos that oppose rather than support election misinformation. However, watching misinformative election videos still lead users to a small number of misinformative videos in the up-next trails. Our results imply that while YouTube largely seems successful in regulating election misinformation, there is still room for improvement.


翻译:随着2022年美国中期选举的临近,关于2020年总统选举的阴谋性指控继续威胁用户对选举过程的信任。为了规范选举错误信息,YouTube推出了一些政策,将此类内容从搜索和建议中删除。在本文中,我们对YouTube进行了为期9天的众源审计,以评估这些政策的颁布程度。我们招聘了99个用户,他们安装了一个浏览器扩展功能,使我们能够收集未来建议线索,搜索关于2020年选举的45个视频和88个搜索查询结果。我们发现YouTube的搜索结果,不论搜索偏差如何,都包含更多反对而不是支持选举错误信息的视频。然而,看错误的信息化选举视频仍然导致用户在最新路径上看到少量信息化视频。我们的结果表明,尽管YouTube在管理选举错误信息方面似乎基本成功,但仍有改进的余地。

0
下载
关闭预览

相关内容

YouTube 是一个视频分享网站,2006 年被 Google 收购。 youtube.com
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 每周精选:近期推荐系统论文及进展
LibRec智能推荐
30+阅读 · 2018年2月5日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
5+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 每周精选:近期推荐系统论文及进展
LibRec智能推荐
30+阅读 · 2018年2月5日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
5+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员