Every undirected graph $G$ has a (weighted) cut-equivalent tree $T$, commonly named after Gomory and Hu who discovered it in 1961. Both $T$ and $G$ have the same node set, and for every node pair $s,t$, the minimum $(s,t)$-cut in $T$ is also an exact minimum $(s,t)$-cut in $G$. We give the first subcubic-time algorithm that constructs such a tree for a simple graph $G$ (unweighted with no parallel edges). Its time complexity is $\tilde{O}(n^{2.5})$, for $n=|V(G)|$; previously, only $\tilde{O}(n^3)$ was known, except for restricted cases like sparse graphs. Consequently, we obtain the first algorithm for All-Pairs Max-Flow in simple graphs that breaks the cubic-time barrier. Gomory and Hu compute this tree using $n-1$ queries to (single-pair) Max-Flow; the new algorithm can be viewed as a fine-grained reduction to $\tilde{O}(\sqrt{n})$ Max-Flow computations on $n$-node graphs.
翻译:每个未方向的图形$G$都有一种(加权的)切成树等值的树$T$,通常以1961年发现的Gomory和Hu公司命名。美元和美元都有相同的节点设置。美元和美元都是相同的节点设置。对于每一个节点配方$,t美元,美元中最小的$t,美元是美元,美元中最小的美元,美元中最小的美元,也是一种以美元计价的限定情况。因此,我们在简单的图表中为打破立方屏障的All-Pairs Max-Flow提供了第一个亚基时算法。 Gomory 和 Hu 使用$- 1 的查询将这棵树拼成$- 1 $ (sle-pair) $ (n) 美元 ; 之前只知道$\ tite{O} (n) 美元, 美元, 美元, 美元是已知的,只有像稀薄的图表那样的限定情况除外。因此,我们用简单的图表为所有Pairs Max-Flow 提供了第一个算法。