We present a near-tight analysis of the average "query complexity" -- \`a la Nguyen and Onak [FOCS'08] -- of the randomized greedy maximal matching algorithm, improving over the bound of Yoshida, Yamamoto and Ito [STOC'09]. For any $n$-vertex graph of average degree $\bar{d}$, this leads to the following sublinear-time algorithms for estimating the size of maximum matching and minimum vertex cover, all of which are provably time-optimal up to logarithmic factors: $\bullet$ A multiplicative $(2+\epsilon)$-approximation in $\widetilde{O}(n/\epsilon^2)$ time using adjacency list queries. This (nearly) matches an $\Omega(n)$ time lower bound for any multiplicative approximation and is, notably, the first $O(1)$-approximation that runs in $o(n^{1.5})$ time. $\bullet$ A $(2, \epsilon n)$-approximation in $\widetilde{O}((\bar{d} + 1)/\epsilon^2)$ time using adjacency list queries. This (nearly) matches an $\Omega(\bar{d}+1)$ lower bound of Parnas and Ron [TCS'07] which holds for any $(O(1), \epsilon n)$-approximation, and improves over the bounds of [Yoshida et al. STOC'09; Onak et al. SODA'12] and [Kapralov et al. SODA'20]: The former two take at least quadratic time in the degree which can be as large as $\Omega(n^2)$ and the latter obtains a much larger approximation. $\bullet$ A $(2, \epsilon n)$-approximation in $\widetilde{O}(n/\epsilon^3)$ time using adjacency matrix queries. This (nearly) matches an $\Omega(n)$ time lower bound in this model and improves over the $\widetilde{O}(n\sqrt{n})$-time $(2, \epsilon n)$-approximate algorithm of [Chen, Kannan, and Khanna ICALP'20]. It also turns out that any non-trivial multiplicative approximation in the adjacency matrix model requires $\Omega(n^2)$ time, so the additive $\epsilon n$ error is necessary too. As immediate corollaries, we get improved sublinear time estimators for (variants of) TSP and an improved AMPC algorithm for maximal matching.


翻译:我们提出一个近距离分析, 平均“ 询问复杂度” -- ( ⁇ la guyen 和 Onak [FOCS'08] ) -- 随机的贪婪最大匹配算法, 超过Yoshida、 Yamamoto 和 Ito [STOC'09] 的约束。 对于平均度的$\bar{d} 美元顶点图, 这将导致以下的子线性算法, 用来估计最大匹配和最小顶点覆盖的大小。 所有匹配和最小顶点都具有可辨识的时间- 最佳到对数系数: $( bullet) 倍( $ (2 ⁇ epsilon) 美元(oblistal) 的多位值 。 (n) 美元比值比值至少( == d) 美元( 美元) 和 美元比值( 美元) 美元比值( 美元) 美元比值比值( 美元比值) 美元比值比值( 美元比值) 美元比值比值比值( 美元比值) 美元比值比值比值比值比值比值比值比值比值比值比值( 美元) 美元比值比值比值比值比值比值比值比值比值比值的 O

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员