We design an $n^{2+o(1)}$-time algorithm that constructs a cut-equivalent (Gomory-Hu) tree of a simple graph on $n$ nodes. This bound is almost-optimal in terms of $n$, and it improves on the recent $\tilde{O}(n^{2.5})$ bound by the authors (STOC 2021), which was the first to break the cubic barrier. Consequently, the All-Pairs Maximum-Flow (APMF) problem has time complexity $n^{2+o(1)}$, and for the first time in history, this problem can be solved faster than All-Pairs Shortest Paths (APSP). We further observe that an almost-linear time algorithm (in terms of the number of edges $m$) is not possible without first obtaining a subcubic algorithm for multigraphs. Finally, we derandomize our algorithm, obtaining the first subcubic deterministic algorithm for Gomory-Hu Tree in simple graphs, showing that randomness is not necessary for beating the $n-1$ times max-flow bound from 1961. The upper bound is $\tilde{O}(n^{2\frac{2}{3}})$ and it would improve to $n^{2+o(1)}$ if there is a deterministic single-pair maximum-flow algorithm that is almost-linear. The key novelty is in using a ``dynamic pivot'' technique instead of the randomized pivot selection that was central in recent works.
翻译:我们设计了美元=2+o(1)}美元-时间算法,用来在美元节点上构建一个直径等值的直径(Gomory-Hu)树(Gomory-Hu)的简单图表。这个绑定几乎是美元的最佳值,而最近作者们约束的 $tilde{O}(n ⁇ 2.5}) 美元(STOC 2021), 这是第一个打破立方屏屏障的。 因此, All-pairs Most-Flow (APMF) 问题具有时间复杂性 $n=2+o(1)} 美元(Gomory-Hu ) 问题, 在历史上第一次, 这个问题可以比 All-Pairserest Paths(APSP) 几乎更快地解决。 我们进一步观察到, 近线性时间算算法(以边缘值为美元数) 。 最后, 我们解析我们的算法, 在简单图表中为 Gomorticrito- hlog 获得第一个子确定性算法( subiltiblic) ($_Omory- hilly_rickn_rick_rick_rick_rick_p) 是1961 美元) 需要最近在最大一个固定值 =xxxxxxx 。