Deep learning models have become increasingly popular for flood prediction due to their superior accuracy and efficiency compared to traditional methods. However, current machine learning methods often rely on separate spatial or temporal feature analysis and have limitations on the types, number, and dimensions of input data. This study presented a CNN-RNN hybrid feature fusion modelling approach for urban flood prediction, which integrated the strengths of CNNs in processing spatial features and RNNs in analyzing different dimensions of time sequences. This approach allowed for both static and dynamic flood predictions. Bayesian optimization was applied to identify the seven most influential flood-driven factors and determine the best combination strategy. By combining four CNNs (FCN, UNet, SegNet, DeepLabv3+) and three RNNs (LSTM, BiLSTM, GRU), the optimal hybrid model was identified as LSTM-DeepLabv3+. This model achieved the highest prediction accuracy (MAE, RMSE, NSE, and KGE were 0.007, 0.025, 0.973 and 0.755, respectively) under various rainfall input conditions. Additionally, the processing speed was significantly improved, with an inference time of 1.158s (approximately 1/125 of the traditional computation time) compared to the physically-based models.


翻译:深度学习模型由于其优越的精度和效率而越来越受欢迎,用于洪水预测。然而,当前的机器学习方法往往依赖于分离的空间或时间特征分析,并且在输入数据的类型、数量和维度方面存在限制。本研究提出了一种融合卷积神经网络和循环神经网络的特征模型方法,用于城市洪水预测,将卷积神经网络处理空间特征和循环神经网络分析不同时间序列维度的优势集于一体。该方法允许进行静态和动态洪水预测。应用贝叶斯优化方法确定了七个最重要的洪水驱动因素,并确定了最佳的组合策略。通过结合四种卷积神经网络 (FCN、UNet、SegNet、DeepLabv3+) 和三种循环神经网络 (LSTM、BiLSTM、GRU),确定了最优的混合模型为LSTM-DeepLabv3+。该模型在各种降雨输入条件下实现了最高的预测精度 (平均绝对误差、均方根误差、Nash-Sutcliffe 效率系数和 Kling-Gupta 效率系数依次为 0.007、0.025、0.973 和 0.755)。此外,与基于物理的模型相比,处理速度显著提高,推理时间为 1.158s (约为传统计算时间的 1/125)。

0
下载
关闭预览

相关内容

长短期记忆网络(LSTM)是一种用于深度学习领域的人工回归神经网络(RNN)结构。与标准的前馈神经网络不同,LSTM具有反馈连接。它不仅可以处理单个数据点(如图像),还可以处理整个数据序列(如语音或视频)。例如,LSTM适用于未分段、连接的手写识别、语音识别、网络流量或IDSs(入侵检测系统)中的异常检测等任务。
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
29+阅读 · 2018年4月6日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员