We advance a recently flourishing line of work at the intersection of learning theory and computational economics by studying the learnability of two classes of mechanisms prominent in economics, namely menus of lotteries and two-part tariffs. The former is a family of randomized mechanisms designed for selling multiple items, known to achieve revenue beyond deterministic mechanisms, while the latter is designed for selling multiple units (copies) of a single item with applications in real-world scenarios such as car or bike-sharing services. We focus on learning high-revenue mechanisms of this form from buyer valuation data in both distributional settings, where we have access to buyers' valuation samples up-front, and the more challenging and less-studied online settings, where buyers arrive one-at-a-time and no distributional assumption is made about their values. Our main contribution is proposing the first online learning algorithms for menus of lotteries and two-part tariffs with strong regret-bound guarantees. In the general case, we provide a reduction to a finite number of experts, and in the limited buyer type case, we show a reduction to online linear optimization, which allows us to obtain no-regret guarantees by presenting buyers with menus that correspond to a barycentric spanner. In addition, we provide algorithms with improved running times over prior work for the distributional settings. The key difficulty when deriving learning algorithms for these settings is that the relevant revenue functions have sharp transition boundaries. In stark contrast with the recent literature on learning such unstructured functions, we show that simple discretization-based techniques are sufficient for learning in these settings.
翻译:暂无翻译