Recent 3D-aware GANs rely on volumetric rendering techniques to disentangle the pose and appearance of objects, de facto generating entire 3D volumes rather than single-view 2D images from a latent code. Complex image editing tasks can be performed in standard 2D-based GANs (e.g., StyleGAN models) as manipulation of latent dimensions. However, to the best of our knowledge, similar properties have only been partially explored for 3D-aware GAN models. This work aims to fill this gap by showing the limitations of existing methods and proposing LatentSwap3D, a model-agnostic approach designed to enable attribute editing in the latent space of pre-trained 3D-aware GANs. We first identify the most relevant dimensions in the latent space of the model controlling the targeted attribute by relying on the feature importance ranking of a random forest classifier. Then, to apply the transformation, we swap the top-K most relevant latent dimensions of the image being edited with an image exhibiting the desired attribute. Despite its simplicity, LatentSwap3D provides remarkable semantic edits in a disentangled manner and outperforms alternative approaches both qualitatively and quantitatively. We demonstrate our semantic edit approach on various 3D-aware generative models such as pi-GAN, GIRAFFE, StyleSDF, MVCGAN, EG3D and VolumeGAN, and on diverse datasets, such as FFHQ, AFHQ, Cats, MetFaces, and CompCars. The project page can be found: \url{https://enisimsar.github.io/latentswap3d/}.
翻译:最近的 3D-aware GANs 依赖量子化技术来解开物体的外形和外形。 这项工作的目的是通过显示现有方法的局限性来填补这一空白, 并提议 LentantSwap3D, 一种模型- 一种用于在预先训练的 3D-aware GANs 的潜在空间中进行属性编辑的模型- 数字化方法。 我们首先通过使用随机森林分类器的特性重要性排序来确定模型控制属性的潜在空间中最相关的层面( 例如StyleGAN 模型)。 然而, 根据我们所知, 3D-awa GAN 模型的类似属性仅部分地被探索。 这项工作的目的是通过显示现有方法的局限性来填补这一空白, 并提议 LentSwap3D, 一种模型- 用来在预训练的 3D-awre GANs 的潜在空间中进行属性编辑。 我们首先根据随机森林分类的特性排序, 将图像的顶端点- K最相关的潜值化的维维维维值化的维度与图像显示预期的属性。 尽管它很简单,, lientSwapatSwa3DDDDD, 提供惊人的S- QQQQ3 和S- 和S- real- real- g- AS- g- g- realal- ASal- g- g- 方法, 和S- 。