The problem to be solved in this paper is to construct a general method of proving whether a certain set is p-computable or not. The method is based on a polynomial analogue of the classical Gandhi's fixed point theorem. The classical Gandhi theorem uses the extension of the predicate with the help of the special operator $\Gamma^{\Omega^*}_{\Phi(x)}$ whose smallest fixed point is the $\Sigma$-set. The work uses a new type of operator - $\Delta_0^p$-operator $\Gamma_{F_{P_1^{+}},...,F_{P_n^{+}}}^{\mathfrak{M}}$, which extends predicates so that the smallest fixed point remains a p-computable set. Moreover, if in the classical Gandhi's fixed point theorem the special $\Sigma$-formula $\Phi(\overline {x})$ is used in the construction of the operator, then in the new operator, instead of a single formula, special generating families of formulas $F_ {P_1 ^ {+}},...,F_{P_n^{+}}$. This work opens up broad prospects for the application of the polynomial analogue of the Gandhi theorem in the construction of new types of terms and formulas, in the construction of new data types and programs of polynomial computational complexity in Turing complete languages.
翻译:本文要解决的问题是构建一个通用的方法, 以证明某个集是否可 pcompable 。 此方法基于古典甘地固定点理论的多元类比 。 古典甘地定理在特别操作员 $\ Gamma ⁇ Omega ⁇ ⁇ Phi( x) 的帮助下使用前提扩展 。 最小固定点为 $\ Sigma$\\ sigma$ ( overline {x) 的 美元。 工作使用一种新的操作员类型 - $\\ Delta_ 0 ⁇ p$- operator $\ gamamamamaffrak_ 1,... F\\\\\ nmathfrak{M $ 。 该方法扩展了前缀, 最小固定点仍为 pcompcomp 设置 。 此外, 如果在古典甘地定点中, $\ sgramagma$\ premola sult $\\\\\\ main mainal lial limainal labal press masium listration listrational listration listrations listrations of mus list listrational listrational ligal listal ligal lipal list list ligal list mas list lippututututus.