Non-overlapping codes are a set of codewords in $\bigcup_{n \ge 2} \mathbb{Z}_q^n$, where $\mathbb{Z}_q = \{0,1,\dots,q-1\}$, such that, the prefix of each codeword is not a suffix of any codeword in the set, including itself; and for variable-length codes, a codeword does not contain any other codeword as a subword. In this paper, we investigate a generic method to generalize binary codes to $q$-ary for $q > 2$, and analyze this generalization on the two constructions given by Levenshtein (also by Gilbert; Chee, Kiah, Purkayastha, and Wang) and Bilotta, respectively. The generalization on the former construction gives large non-expandable fixed-length non-overlapping codes whose size can be explicitly determined; the generalization on the later construction is the first attempt to generate $q$-ary variable-length non-overlapping codes. More importantly, this generic method allows us to utilize the generating function approach to analyze the cardinality of the underlying $q$-ary non-overlapping codes. The generating function approach not only enables us to derive new results, e.g., recurrence relations on their cardinalities, new combinatorial interpretations for the constructions, and the limit superior of their cardinalities for some special cases, but also greatly simplifies the arguments for these results. Furthermore, we give an exact formula for the number of fixed-length words that do not contain the codewords in a variable-length non-overlapping code as subwords. This thereby solves an open problem by Bilotta and induces a recursive upper bound on the maximum size of variable-length non-overlapping codes.


翻译:非重叠代码是元元元的一套代号。 在本文中, 我们调查了一种通用方法, 将二元代码普遍化为$q > 2美元, 并分析Leveshtein( 也是由 Gilbert; Chee, Kiah, Purkayastha, 和 Wang) 和 Bilotta (分别提供) 给出的两种构建的通用代号, 这样, 每个代号的前缀并不是包括它本身在内的任何代号的后缀; 对于变量长代码, 一个代号并不包含任何其他代号作为子词。 在本文中, 我们调查一种通用方法, 将二元代码普遍化为$q$- $- $- 美元( $) 美元( $) ($) $( $) ( $) $( $) ( $) $( $) ) ( $( $) ) ( ) ( ) ( 美元) ( ) ( ) ( ) ( ) 美元( ) ( ) ( ) ( 美元( ) ( ) ( 美元) ( 美元) ( ) ( ) ( ) ( ) ( 美元) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (

0
下载
关闭预览

相关内容

【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
64+阅读 · 2021年8月20日
【WSDM2021】拓扑去噪的鲁棒图神经网络
专知会员服务
27+阅读 · 2020年11月14日
专知会员服务
53+阅读 · 2020年9月7日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
【课程推荐】 人工普遍智能(Artificial General Intelligence)
专知会员服务
10+阅读 · 2019年11月10日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
已删除
将门创投
3+阅读 · 2017年9月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月13日
Arxiv
0+阅读 · 2021年10月11日
Arxiv
8+阅读 · 2019年2月15日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
已删除
将门创投
3+阅读 · 2017年9月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员