Many numerical methods for evaluating matrix functions can be naturally viewed as computational graphs. Rephrasing these methods as directed acyclic graphs (DAGs) is a particularly effective approach to study existing techniques, improve them, and eventually derive new ones. The accuracy of these matrix techniques can be characterized by the accuracy of their scalar counterparts, thus designing algorithms for matrix functions can be regarded as a scalar-valued optimization problem. The derivatives needed during the optimization can be calculated automatically by exploiting the structure of the DAG, in a fashion analogous to backpropagation. This paper describes GraphMatFun.jl, a Julia package that offers the means to generate and manipulate computational graphs, optimize their coefficients, and generate Julia, MATLAB, and C code to evaluate them efficiently at a matrix argument. The software also provides tools to estimate the accuracy of a graph-based algorithm and thus obtain numerically reliable methods. For the exponential, for example, using a particular form (degree-optimal) of polynomials produces implementations that in many cases are cheaper, in terms of computational cost, than the Pad\'e-based techniques typically used in mathematical software. The optimized graphs and the corresponding generated code are available online.


翻译:用于评估矩阵功能的许多数字方法可以自然地被视为计算图。将这些方法改写成定向单环图(DAGs)是一种特别有效的方法,可以研究现有技术,改进这些技术,并最终得出新的技术。这些矩阵技术的准确性可以用其缩标对应方的准确性来描述,因此,为矩阵功能设计算法可以被视为一个以缩略图估价的优化问题。优化期间所需的衍生物可以通过利用DAG结构,以类似于反向分析的方式自动计算。本文描述了GapMatFun.jl,这是一个Julia软件包,它提供生成和操作计算图、优化其系数和生成朱丽亚、MATLAB和C代码的手段,以便用矩阵参数来有效评估这些技术。软件还提供了工具,用以估计基于图表的算法的准确性,从而获得数字上可靠的方法。例如,对指数来说,使用一种特定的形式(度-最佳)多数值分析方法,在很多情况下,在计算成本方面比较便宜,优化其系数,并生成朱丽亚、MadLAB 典型的数学方法。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月15日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员