We are looking at families of functions or measures on the torus which are specified by a finite number of parameters $N$. The task, for a given family, is to look at a small number of Fourier coefficients of the object, at a set of locations that is predetermined and may depend only on $N$, and determine the object. We look at (a) the indicator functions of at most $N$ intervals of the torus and (b) at sums of at most $N$ complex point masses on the multidimensional torus. In the first case we reprove a theorem of Courtney which says that the Fourier coefficients at the locations $0, 1, \ldots, N$ are sufficient to determine the function (the intervals). In the second case we produce a set of locations of size $O(N \log^{d-1} N)$ which suffices to determine the measure.
翻译:我们研究的是由一定数目的参数确定的横线上的功能或措施的大小。 对于一个特定的家庭来说,任务是在一套预先确定并可能仅依赖美元的地点,在一组地点查看该物体的少量四倍系数,并确定该物体。我们研究的是:(a) 横线中最多以美元为间隔的指标功能,和(b) 在多维横线上以最多以美元复杂点质量为单位的金额。在第一个案例中,我们重新检视了法院的理论,该理论说该地点的四倍系数为0,1,\ldots,N$足以确定该功能(间隔)。在第二个案例中,我们生产一套大小为$O(N\log ⁇ -1}N)的指标功能,足以确定计量尺度。