Multistage sequential decision-making scenarios are commonly seen in the healthcare diagnosis process. In this paper, an active learning-based method is developed to actively collect only the necessary patient data in a sequential manner. There are two novelties in the proposed method. First, unlike the existing ordinal logistic regression model which only models a single stage, we estimate the parameters for all stages together. Second, it is assumed that the coefficients for common features in different stages are kept consistent. The effectiveness of the proposed method is validated in both a simulation study and a real case study. Compared with the baseline method where the data is modeled individually and independently, the proposed method improves the estimation efficiency by 62\%-1838\%. For both simulation and testing cohorts, the proposed method is more effective, stable, interpretable, and computationally efficient on parameter estimation. The proposed method can be easily extended to a variety of scenarios where decision-making can be done sequentially with only necessary information.

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/

We propose an empirical likelihood ratio test for nonparametric model selection, where the competing models may be nested, nonnested, overlapping, misspecified, or correctly specified. It compares the squared prediction errors of models based on the cross-validation and allows for heteroscedasticity of the errors of models. We develop its asymptotic distributions for comparing additive models and varying-coefficient models and extend it to test significance of variables in additive models with massive data. The method is applicable to model selection among supervised learning models. To facilitate implementation of the test, we provide a fast calculation procedure. Simulations show that the proposed tests work well and have favorable finite sample performance over some existing approaches. The methodology is validated on an empirical application.

0
0
下载
预览

Count data with excessive zeros are often encountered when modelling infectious disease occurrence. The degree of zero inflation can vary over time due to non-epidemic periods as well as by age group or region. The existing endemic-epidemic modelling framework (aka HHH) lacks a proper treatment for surveillance data with excessive zeros as it is limited to Poisson and negative binomial distributions. In this paper, we propose a multivariate zero-inflated endemic-epidemic model with random effects to extend HHH. Parameters of the new zero-inflation and the HHH part of the model can be estimated jointly and efficiently via (penalized) maximum likelihood inference using analytical derivatives. A simulation study confirms proper convergence and coverage probabilities of confidence intervals. Applying the model to measles counts in the 16 German states, 2005--2018, shows that the added zero-inflation improves probabilistic forecasts.

0
0
下载
预览

A connected and automated vehicle safety metric determines the performance of a subject vehicle (SV) by analyzing the data involving the interactions among the SV and other dynamic road users and environmental features. When the data set contains only a finite set of samples collected from the naturalistic mixed-traffic driving environment, a metric is expected to generalize the safety assessment outcome from the observed finite samples to the unobserved cases by specifying in what domain the SV is expected to be safe and how safe the SV is, statistically, in that domain. However, to the best of our knowledge, none of the existing safety metrics are able to justify the above properties with an operational domain specific, guaranteed complete, and provably unbiased safety evaluation outcome. In this paper, we propose a novel safety metric that involves the $\alpha$-shape and the $\epsilon$-almost robustly forward invariant set to characterize the SV's almost safe operable domain and the probability for the SV to remain inside the safe domain indefinitely, respectively. The empirical performance of the proposed method is demonstrated in several different operational design domains through a series of cases covering a variety of fidelity levels (real-world and simulators), driving environments (highway, urban, and intersections), road users (car, truck, and pedestrian), and SV driving behaviors (human driver and self driving algorithms).

0
0
下载
预览

The non-parametric estimation of covariance lies at the heart of functional data analysis, whether for curve or surface-valued data. The case of a two-dimensional domain poses both statistical and computational challenges, which are typically alleviated by assuming separability. However, separability is often questionable, sometimes even demonstrably inadequate. We propose a framework for the analysis of covariance operators of random surfaces that generalises separability, while retaining its major advantages. Our approach is based on the expansion of the covariance into a series of separable terms. The expansion is valid for any covariance over a two-dimensional domain. Leveraging the key notion of the partial inner product, we extend the power iteration method to general Hilbert spaces and show how the aforementioned expansion can be efficiently constructed in practice. Truncation of the expansion and retention of the leading terms automatically induces a non-parametric estimator of the covariance, whose parsimony is dictated by the truncation level. The resulting estimator can be calculated, stored and manipulated with little computational overhead relative to separability. Consistency and rates of convergence are derived under mild regularity assumptions, illustrating the trade-off between bias and variance regulated by the truncation level. The merits and practical performance of the proposed methodology are demonstrated in a comprehensive simulation study and on classification of EEG signals.

0
0
下载
预览

This study proposes a radically alternate approach for extracting quantitative information from schlieren images. The method uses a scaled, derivative enhanced Gaussian process model to obtain true density estimates from two corresponding schlieren images with the knife-edge at horizontal and vertical orientations. We illustrate our approach on schlieren images taken from a wind tunnel sting model, and a supersonic aircraft in flight.

0
0
下载
预览

Personalized recommender systems are playing an increasingly important role as more content and services become available and users struggle to identify what might interest them. Although matrix factorization and deep learning based methods have proved effective in user preference modeling, they violate the triangle inequality and fail to capture fine-grained preference information. To tackle this, we develop a distance-based recommendation model with several novel aspects: (i) each user and item are parameterized by Gaussian distributions to capture the learning uncertainties; (ii) an adaptive margin generation scheme is proposed to generate the margins regarding different training triplets; (iii) explicit user-user/item-item similarity modeling is incorporated in the objective function. The Wasserstein distance is employed to determine preferences because it obeys the triangle inequality and can measure the distance between probabilistic distributions. Via a comparison using five real-world datasets with state-of-the-art methods, the proposed model outperforms the best existing models by 4-22% in terms of recall@K on Top-K recommendation.

0
3
下载
预览

Federated learning is a distributed machine learning method that aims to preserve the privacy of sample features and labels. In a federated learning system, ID-based sample alignment approaches are usually applied with few efforts made on the protection of ID privacy. In real-life applications, however, the confidentiality of sample IDs, which are the strongest row identifiers, is also drawing much attention from many participants. To relax their privacy concerns about ID privacy, this paper formally proposes the notion of asymmetrical vertical federated learning and illustrates the way to protect sample IDs. The standard private set intersection protocol is adapted to achieve the asymmetrical ID alignment phase in an asymmetrical vertical federated learning system. Correspondingly, a Pohlig-Hellman realization of the adapted protocol is provided. This paper also presents a genuine with dummy approach to achieving asymmetrical federated model training. To illustrate its application, a federated logistic regression algorithm is provided as an example. Experiments are also made for validating the feasibility of this approach.

0
3
下载
预览

Data augmentation has been widely used for training deep learning systems for medical image segmentation and plays an important role in obtaining robust and transformation-invariant predictions. However, it has seldom been used at test time for segmentation and not been formulated in a consistent mathematical framework. In this paper, we first propose a theoretical formulation of test-time augmentation for deep learning in image recognition, where the prediction is obtained through estimating its expectation by Monte Carlo simulation with prior distributions of parameters in an image acquisition model that involves image transformations and noise. We then propose a novel uncertainty estimation method based on the formulated test-time augmentation. Experiments with segmentation of fetal brains and brain tumors from 2D and 3D Magnetic Resonance Images (MRI) showed that 1) our test-time augmentation outperforms a single-prediction baseline and dropout-based multiple predictions, and 2) it provides a better uncertainty estimation than calculating the model-based uncertainty alone and helps to reduce overconfident incorrect predictions.

0
3
下载
预览

Learning to rank has been intensively studied and widely applied in information retrieval. Typically, a global ranking function is learned from a set of labeled data, which can achieve good performance on average but may be suboptimal for individual queries by ignoring the fact that relevant documents for different queries may have different distributions in the feature space. Inspired by the idea of pseudo relevance feedback where top ranked documents, which we refer as the \textit{local ranking context}, can provide important information about the query's characteristics, we propose to use the inherent feature distributions of the top results to learn a Deep Listwise Context Model that helps us fine tune the initial ranked list. Specifically, we employ a recurrent neural network to sequentially encode the top results using their feature vectors, learn a local context model and use it to re-rank the top results. There are three merits with our model: (1) Our model can capture the local ranking context based on the complex interactions between top results using a deep neural network; (2) Our model can be built upon existing learning-to-rank methods by directly using their extracted feature vectors; (3) Our model is trained with an attention-based loss function, which is more effective and efficient than many existing listwise methods. Experimental results show that the proposed model can significantly improve the state-of-the-art learning to rank methods on benchmark retrieval corpora.

0
4
下载
预览

In this paper, we describe a solution to tackle a common set of challenges in e-commerce, which arise from the fact that new products are continually being added to the catalogue. The challenges involve properly personalising the customer experience, forecasting demand and planning the product range. We argue that the foundational piece to solve all of these problems is having consistent and detailed information about each product, information that is rarely available or consistent given the multitude of suppliers and types of products. We describe in detail the architecture and methodology implemented at ASOS, one of the world's largest fashion e-commerce retailers, to tackle this problem. We then show how this quantitative understanding of the products can be leveraged to improve recommendations in a hybrid recommender system approach.

0
4
下载
预览
小贴士
相关论文
Jiancheng Jiang,Jiang Xuejun,Wang Haofeng
0+阅读 · 1月20日
Tomas Masak,Soham Sarkar,Victor M. Panaretos
0+阅读 · 1月17日
Bryn Noel Ubald,Pranay Seshadri,Andrew Duncan
0+阅读 · 1月13日
Chen Ma,Liheng Ma,Yingxue Zhang,Ruiming Tang,Xue Liu,Mark Coates
3+阅读 · 2021年1月13日
Asymmetrical Vertical Federated Learning
Yang Liu,Xiong Zhang,Libin Wang
3+阅读 · 2020年6月11日
Test-time augmentation with uncertainty estimation for deep learning-based medical image segmentation
Guotai Wang,Wenqi Li,Michael Aertsen,Jan Deprest,Sebastien Ourselin,Tom Vercauteren
3+阅读 · 2018年7月19日
Qingyao Ai,Keping Bi,Jiafeng Guo,W. Bruce Croft
4+阅读 · 2018年4月16日
相关资讯
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
11+阅读 · 2019年4月13日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
Unsupervised Learning via Meta-Learning
CreateAMind
32+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
11+阅读 · 2018年7月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
9+阅读 · 2018年5月4日
计算机视觉近一年进展综述
机器学习研究会
6+阅读 · 2017年11月25日
深度学习医学图像分析文献集
机器学习研究会
13+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
24+阅读 · 2017年9月8日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员