Traditional probabilistic methods for the simulation of advection-diffusion equations (ADEs) often overlook the entropic contribution of the discretization, e.g., the number of particles, within associated numerical methods. Many times, the gain in accuracy of a highly discretized numerical model is outweighed by its associated computational costs or the noise within the data. We address the question of how many particles are needed in a simulation to best approximate and estimate parameters in one-dimensional advective-diffusive transport. To do so, we use the well-known Akaike Information Criterion (AIC) and a recently-developed correction called the Computational Information Criterion (COMIC) to guide the model selection process. Random-walk and mass-transfer particle tracking methods are employed to solve the model equations at various levels of discretization. Numerical results demonstrate that the COMIC provides an optimal number of particles that can describe a more efficient model in terms of parameter estimation and model prediction compared to the model selected by the AIC even when the data is sparse or noisy, the sampling volume is not uniform throughout the physical domain, or the error distribution of the data is non-IID Gaussian.


翻译:模拟反蒸发扩散方程式(ADEs)的传统概率方法往往忽略离散性(ADEs)的进化贡献,例如,在相关数字方法中,粒子的数量;许多次,高度离散数字模型的准确性因相关计算成本或数据中的噪音而大于该数字模型的准确性;我们处理模拟中需要多少粒子,以最佳估计和估计单维对流-阻断性运输中的参数;为此,我们使用众所周知的Akaike信息标准(AIC)和最近开发的称为Computurational信息标准(COMIC)的校正来指导模型选择过程;使用随机行走和大规模转移粒子跟踪方法在不同离散化水平上解决模型方程式。数值结果显示,COMIC提供了最佳数量的粒子,可以描述比AIC所选择的模型更有效率的参数估计和模型预测模型,即使数据十分稀少或较暖,取样数量在整个物理域内并不统一,或者不差地分配数据。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
74+阅读 · 2020年5月5日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员