We introduce a methodology for online estimation of smoothing expectations for a class of additive functionals, in the context of a rich family of diffusion processes (that may include jumps) -- observed at discrete-time instances. We overcome the unavailability of the transition density of the underlying SDE by working on the augmented pathspace. The new method can be applied, for instance, to carry out online parameter inference for the designated class of models. Algorithms defined on the infinite-dimensional pathspace have been developed in the last years mainly in the context of MCMC techniques. There, the main benefit is the achievement of mesh-free mixing times for the practical time-discretised algorithm used on a PC. Our own methodology sets up the framework for infinite-dimensional online filtering -- an important positive practical consequence is the construct of estimates with the variance that does not increase with decreasing mesh-size. Besides regularity conditions, our method is, in principle, applicable under the weak assumption -- relatively to restrictive conditions often required in the MCMC or filtering literature of methods defined on pathspace -- that the SDE covariance matrix is invertible.


翻译:我们引入了一种方法,在离散时间情况下观测到的多种扩散过程(可能包括跳动)的丰富组合背景下,在线估计对某类添加功能的平滑期望值。我们通过在增强路径空间上开展工作,克服了基础SDE过渡密度的缺失。例如,可以应用新方法对指定类型的模型进行在线参数推论。在无限维度路径空间上定义的演算法,主要在过去几年中主要在MCMCM技术方面得到了发展。主要的好处是,在个人计算机上使用的实用的时间分解算法中实现了无网状混合时间。我们自己的方法为无限的在线过滤建立了框架 -- -- 一个重要的积极实际后果是,根据不随着中位大小的缩小而增加的估计数进行计算。除了常规性条件外,我们的方法原则上在薄弱的假设下适用 -- -- 相对于在路径空间上界定的方法的文献中通常要求的限制性条件而言 -- -- 即SDE可忽略矩阵是不可忽略的。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
108+阅读 · 2020年11月12日
【经典书】机器学习高斯过程,266页pdf
专知会员服务
228+阅读 · 2020年5月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
4+阅读 · 2017年12月5日
Arxiv
0+阅读 · 2021年10月6日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
Arxiv
6+阅读 · 2019年11月14日
Learning to Importance Sample in Primary Sample Space
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
4+阅读 · 2017年12月5日
相关论文
Top
微信扫码咨询专知VIP会员