We present a deep latent variable model for high dimensional sequential data. Our model factorises the latent space into content and motion variables. To model the diverse dynamics, we split the motion space into subspaces, and introduce a unique Hamiltonian operator for each subspace. The Hamiltonian formulation provides reversible dynamics that learn to constrain the motion path to conserve invariant properties. The explicit split of the motion space decomposes the Hamiltonian into symmetry groups and gives long-term separability of the dynamics. This split also means representations can be learnt that are easy to interpret and control. We demonstrate the utility of our model for swapping the motion of two videos, generating sequences of various actions from a given image and unconditional sequence generation.
翻译:我们为高维相继数据提供了一个深潜变量模型。 我们的模型将潜在空间纳入内容和运动变量中。 为了模拟各种动态, 我们将运动空间分成一个子空间, 并为每个子空间引入一个独特的汉密尔顿操作器。 汉密尔顿的配方提供了可逆动态, 可以限制运动路径, 以保存异性特性。 运动空间的明显分割将汉密尔顿人分解成对称组, 并给出动态的长期分离性。 这种分割还意味着可以学习易于解释和控制的表达方式。 我们展示了我们的模型在转换两个视频的动作时的实用性, 从特定图像和无条件序列生成中生成各种动作的序列。