Mobile-edge computing (MEC) is expected to provide low-latency computation service for wireless devices (WDs). However, when WDs are located at cell edge or communication links between base stations (BSs) and WDs are blocked, the offloading latency will be large. To address this issue, we propose an intelligent reflecting surface (IRS)-assisted cell-free MEC system consisting of multiple BSs and IRSs for improving the transmission environment. Consequently, we formulate a min-max latency optimization problem by jointly designing multi-user detection (MUD) matrices, IRSs' reflecting beamforming vectors, WDs' transmit power and edge computing resource, subject to constraints on edge computing capability and IRSs phase shifts. To solve it, an alternating optimization algorithm based on the block coordinate descent (BCD) technique is proposed, in which the original non-convex problem is decoupled into two subproblems for alternately optimizing computing and communication parameters. In particular, we optimize the MUD matrix based on the second-order cone programming (SOCP) technique, and then develop two efficient algorithms to optimize IRSs' reflecting vectors based on the semi-definite relaxation (SDR) and successive convex approximation (SCA) techniques, respectively. Numerical results show that employing IRSs in cell-free MEC systems outperforms conventional MEC systems, resulting in up to about 60% latency reduction can be attained. Moreover, numerical results confirm that our proposed algorithms enjoy a fast convergence, which is beneficial for practical implementation.


翻译:移动- 屏幕计算( MEC) 预计将为无线设备提供低延迟计算服务。 但是, 当WD位于基站和WD之间的细胞边缘或通信连接点被阻塞时, 卸载的延迟度将会很大。 为了解决这个问题, 我们提议了一个智能反射表面( IRS) 辅助无单元格的MEC系统, 由多个 BS 和 IRS 组成, 以改善传输环境。 因此, 我们通过联合设计多用户检测( MUD) 矩阵, IRS 反映气成矢量, WD 传输动力和边缘计算资源, 受边缘计算能力和 IRS 阶段变化的限制。 为了解决这个问题, 我们提议了一个智能反射表面( IRS) 辅助的无单元格系统( IRS) 辅助的无光度计算系统( IMS), 原始的非电解为两个小问题, 用于替代优化计算和通信参数。 特别是, 我们优化MUD矩阵, 以二阶调的 IMC 系统( SOL- C) 计算结果导致连续的常规- 递增压技术( SLIS) 级, 级, 递增后演算,, 以显示常规- RE- RLIS- 优化技术。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
35+阅读 · 2019年11月7日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员