Time warping function provides a mathematical representation to measure phase variability in functional data. Recent studies have developed various approaches to estimate optimal warping between functional observations. However, a principled, generative model on time warping functions is still under-explored. This is a challenging problem because the space of warping functions is non-linear with the conventional Euclidean metric. To address this problem, we propose a stochastic process model for time warping functions, where the key is to transform the warping function space into an inner-product space with the L2 metric. With certain constraints on the warping functions, the transformation is an isometric isomorphism. In the transformed space, we adopt the L2 basis in Hilbert space for representation. We demonstrate the effectiveness of this new framework using three applications: (1) We build a stochastic process model on observed warping functions with estimated basis functions, and then use the model to resample warping functions. (2) The proposed model is used as a prior term in Bayesian registration, which results in reasonable alignment performance. (3) We apply the modeling framework to the Berkeley growth dataset to conduct resampling and perform statistical testing using functional ANOVA on the transformed data in Euclidean space.
翻译:时间扭曲功能为测量功能数据中的阶段变异提供了数学代表, 最近的研究为估算功能观测之间的最佳变异性开发了各种方法。 但是, 时间扭曲功能的有原则的、 基因化模型仍然在探索之中。 这是一个具有挑战性的问题, 因为扭曲功能的空间与常规的欧洲- 克利德兰度测量仪是非线性的。 为了解决这个问题, 我们为时间扭曲功能提出了一个随机转换过程模型, 关键在于将扭曲功能空间转换成带有L2 度的内产空间。 由于对扭曲功能的某些限制, 转换是一种异形。 在已变换的空间, 我们采用Hilbert 空间的L2 模型作为代表。 我们用三种应用来证明这一新框架的有效性:(1) 我们用估计基础功能建立一个关于所观测的扭曲功能的随机过程模型, 然后使用该模型来模拟重置重力功能。 (2) 拟议模型作为Bayesian注册的前一术语, 导致合理的调整性性性工作。 (3) 我们将模型框架应用到Berkelex NO 空间变化数据系统, 进行功能性图像测试, 进行空间扫描 进行统计测试。