We introduce a fine-grained framework for uncertainty quantification of predictive models under distributional shifts. This framework distinguishes the shift in covariate distributions from that in the conditional relationship between the outcome ($Y$) and the covariates ($X$). We propose to reweight the training samples to adjust for an identifiable covariate shift while protecting against worst-case conditional distribution shift bounded in an $f$-divergence ball. Based on ideas from conformal inference and distributionally robust learning, we present an algorithm that outputs (approximately) valid and efficient prediction intervals in the presence of distributional shifts. As a use case, we apply the framework to sensitivity analysis of individual treatment effects with hidden confounding. The proposed methods are evaluated in simulation studies and three real data applications, demonstrating superior robustness and efficiency compared with existing benchmarks.
翻译:暂无翻译