There is a large body of recent work applying machine learning (ML) techniques to query optimization and query performance prediction in relational database management systems (RDBMSs). However, these works typically ignore the effect of \textit{intra-parallelism} -- a key component used to boost the performance of OLAP queries in practice -- on query performance prediction. In this paper, we take a first step towards filling this gap by studying the problem of \textit{tuning the degree of parallelism (DOP) via ML techniques} in Microsoft SQL Server, a popular commercial RDBMS that allows an individual query to execute using multiple cores. In our study, we cast the problem of DOP tuning as a {\em regression} task, and examine how several popular ML models can help with query performance prediction in a multi-core setting. We explore the design space and perform an extensive experimental study comparing different models against a list of performance metrics, testing how well they generalize in different settings: $(i)$ to queries from the same template, $(ii)$ to queries from a new template, $(iii)$ to instances of different scale, and $(iv)$ to different instances and queries. Our experimental results show that a simple featurization of the input query plan that ignores cost model estimations can accurately predict query performance, capture the speedup trend with respect to the available parallelism, as well as help with automatically choosing an optimal per-query DOP.


翻译:应用机器学习(ML)技术来查询优化和查询相关数据库管理系统(RDBMS)的绩效预测(RDBMS),最近有大量工作应用了机器学习(ML)技术,以查询优化和查询相关数据库管理系统(RDBMS)中的绩效预测。然而,这些工作通常忽略了(textit{Intra-parellism}) -- -- 在实践中提高OLAP查询绩效的一个关键组成部分 -- -- 用于查询性绩效预测。在本文件中,我们为填补这一差距迈出了第一步,方法是研究微软 SQL 服务器中的通过 ML 技术调整平行度的问题。 微软 SQL 服务器是一个广受欢迎的商业 RDBMS,允许个人使用多个核心进行查询。在我们的研究中,我们把 DOP 调整的问题自动地忽略为 exem regregress} 任务, 并研究几个受欢迎的 MLML 模型如何帮助在多核心环境中进行查询性能预测。 我们探索设计空间并进行一项广泛的实验性模型比较不同的模型,测试它们在不同环境中的普及程度: 从同一模板查询, $ (ii) 到从新的模板查询, 从新的进度到不同的进度到不同的进度, 美元, 从新的进度到不同的进度, 显示我们不同的进度到不同的进度, 从一个实验性能到不同的估测算。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
Arxiv
6+阅读 · 2018年6月18日
Arxiv
8+阅读 · 2018年1月30日
VIP会员
相关VIP内容
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员