While the amount of data produced and accumulated continues to advance at unprecedented rates, protection and concealment of data increase its prominence as a field of scientific study that requires more action. It is essential to protect privacy-sensitive data at every phase; at rest, at run, and while computations are executed on data. The zero-knowledge proof (ZKP) schemes are a cryptographic tool toward this aim. ZKP allows a party to securely ensure the data's authenticity and precision without revealing confidential or privacy-sensitive information during communication or computation. The power of zero-knowledge protocols is based on intractable problems. There is a requirement to design more secure and efficient zero-knowledge proofs. This demand raises the necessity of determining appropriate intractable problems to develop novel ZKP schemes. In this paper, we present a brief outline of ZKP schemes, the connection of these structures to group-theoretic intractable problems, and annotate a list of intractable problems in group theory that can be employed to devise new ZKP schemes.
翻译:虽然制作和积累的数据数量继续以前所未有的速度增加,但数据保护和隐藏作为科学研究领域越来越突出,需要采取更多行动;必须在每个阶段保护隐私敏感数据;必须在休息阶段、运行阶段和根据数据进行计算时保护隐私敏感数据;零知识证明(ZKP)计划是实现这一目标的加密工具。ZKP允许当事方在通信或计算期间确保数据的真实性和准确性,同时不泄露机密或隐私敏感信息。零知识协议的力量基于棘手问题。需要设计更安全和高效的零知识证明。这一要求提出了为开发新奇的ZKP计划确定适当棘手问题的必要性。在本文件中,我们简要介绍了ZKP计划、这些结构与群体理论棘手问题的联系以及可以用来设计新的ZKP计划的集体理论中的棘手问题清单。