We investigate resource allocation for quantum entanglement distribution over an optical network. We characterize and model a network architecture that employs a single quasi-deterministic time-frequency heralded Einstein-Podolsky-Rosen (EPR) pair source, and develop a routing scheme for distributing entangled photon pairs over such a network. We focus on max-min fairness in entanglement distribution and compare the performance of various spectrum allocation schemes by examining the max-min and median number of EPR-pairs assigned by them, and the Jain index associated with this assignment. Since this presents an NP-hard problem, we identify two approximation algorithms that outperform others in minimum and mean EPR-pair rate distribution and are comparable to others in the Jain index. We also analyze how the network size and connectivity affect these metrics using Watts-Strogatz random graphs. We find that a spectrum allocation approach that achieves high minimum EPR-pair rate can perform significantly worse when the median EPR-pair rate, Jain index, and runtimes are considered.
翻译:暂无翻译