Ultra-reliable and low-latency communication (URLLC) is a pivotal technique for enabling the wireless control over industrial Internet-of-Things (IIoT) devices. By deploying distributed access points (APs), cell-free massive multiple-input and multiple-output (CF mMIMO) has great potential to provide URLLC services for IIoT devices. In this paper, we investigate CF mMIMO-enabled URLLC in a smart factory. Lower bounds (LBs) of downlink ergodic data rate under finite channel blocklength (FCBL) with imperfect channel state information (CSI) are derived for maximum-ratio transmission (MRT), full-pilot zero-forcing (FZF), and local zero-forcing (LZF) precoding schemes. Meanwhile, the weighted sum rate is maximized by jointly optimizing the pilot power and transmission power based on the derived LBs. Specifically, we first provide the globally optimal solution of the pilot power, and then introduce some approximations to transform the original problems into a series of subproblems, which can be expressed in a geometric programming (GP) form that can be readily solved. Finally, an iterative algorithm is proposed to optimize the power allocation based on various precoding schemes. Simulation results demonstrate that the proposed algorithm is superior to the existing algorithms, and that the quality of URLLC services will benefit by deploying more APs, except for the FZF precoding scheme.


翻译:在本文中,我们调查了一个智能工厂中的CF mMIMO驱动的URLLC(URLLC)是一个关键技术,能够对工业互联网(IIOT)设备进行无线控制。通过部署分布式接入点(APs)、无细胞大规模多输入和多输出(CFMMIMIMO)和当地零输入(CFZF),极有可能为IIOT设备提供URLLC服务。在本文件中,我们调查了一个智能工厂中的CF mMIMO驱动的URLLC。在有限频道轮廓长度(FCBL)下行的下行链(LBs)数据速率下行线(LBs)下线(LBs)下带数据速率,在最大频道状态信息(CBLF)下导出不完善的频道状态信息(CSI)下,用于最大纬度传输(MRT)传输(MRT), 全面试点零row-x(F)计划(F) 和当地零推算法前(LZ)预算算算算算算法(以最优化的系统将显示现有最佳的地平流质量。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员