This paper presents an ontology-aware pretrained language model (OPAL) for end-to-end task-oriented dialogue (TOD). Unlike chit-chat dialogue models, task-oriented dialogue models fulfill at least two task-specific modules: dialogue state tracker (DST) and response generator (RG). The dialogue state consists of the domain-slot-value triples, which are regarded as the user's constraints to search the domain-related databases. The large-scale task-oriented dialogue data with the annotated structured dialogue state usually are inaccessible. It prevents the development of the pretrained language model for the task-oriented dialogue. We propose a simple yet effective pretraining method to alleviate this problem, which consists of two pretraining phases. The first phase is to pretrain on large-scale contextual text data, where the structured information of the text is extracted by the information extracting tool. To bridge the gap between the pretraining method and downstream tasks, we design two pretraining tasks: ontology-like triple recovery and next-text generation, which simulates the DST and RG, respectively. The second phase is to fine-tune the pretrained model on the TOD data. The experimental results show that our proposed method achieves an exciting boost and get competitive performance even without any TOD data on CamRest676 and MultiWOZ benchmarks.
翻译:本文展示了用于最终到最终任务导向对话的本科-有意识预先培训语言模式(OPAL),用于最终到最终任务导向对话(TOD)。与chit-chat对话模式不同,任务导向对话模式至少满足两个具体任务模块:对话国家跟踪器(DST)和响应生成器(RG)。对话状态包括域-地值三重,这被视为用户搜索与域有关数据库的制约。与附加说明的结构化对话国的大规模任务导向对话数据通常无法进入。它阻碍了为任务导向对话开发预先培训语言模式。我们提出了一种简单而有效的培训前方法来缓解这一问题,其中包括两个培训前阶段。第一阶段是大规模背景文本数据前列,信息提取工具可以提取出文本的结构化信息。为了缩小培训前方法和下游任务之间的差距,我们设计了两项培训前任务:类似于“三重技术”的恢复和“下层”生成,分别模拟任务导向了任务导向对话。我们提出了一种简单而有效的培训前培训方法来缓解这一问题,这包括两个培训前阶段。第一阶段是,即培训前两个培训阶段。第一阶段,即对大型背景文本数据进行精确的推进方法。