The Sliced-Wasserstein distance (SW) is a computationally efficient and theoretically grounded alternative to the Wasserstein distance. Yet, the literature on its statistical properties -- or, more accurately, its generalization properties -- with respect to the distribution of slices, beyond the uniform measure, is scarce. To bring new contributions to this line of research, we leverage the PAC-Bayesian theory and a central observation that SW may be interpreted as an average risk, the quantity PAC-Bayesian bounds have been designed to characterize. We provide three types of results: i) PAC-Bayesian generalization bounds that hold on what we refer as adaptive Sliced-Wasserstein distances, i.e. SW defined with respect to arbitrary distributions of slices (among which data-dependent distributions), ii) a principled procedure to learn the distribution of slices that yields maximally discriminative SW, by optimizing our theoretical bounds, and iii) empirical illustrations of our theoretical findings.
翻译:Sliced-Wasserstein 距离( SW) 是一种在计算上效率高和理论上基于理论的替代瓦塞尔斯坦距离的替代方法。 然而,有关其统计属性的文献 -- -- 或更准确地说,其概括性属性 -- -- 在超出统一测量尺度的切片分布方面是稀缺的。 为了给这一研究线带来新的贡献,我们利用PAC-Bayesyian理论以及SW可能被解释为平均风险的中央观察,PAC-Bayesian界限被设计成特征。 我们提供了三种类型的结果:i) PAC-Bayesian通用界限,它维持着我们所称的适应性斜切片-Wasserstein距离,即SWSW定义的任意分布(数据依赖的分布)、ii)一个有原则性的程序,通过优化我们的理论界限来学习能够产生最大差别的西经的切片的分布,以及三) 我们理论结论的经验性插图。