Cooperative Adaptive Cruise Control (CACC) is a fundamental connected vehicle application that extends Adaptive Cruise Control by exploiting vehicle-to-vehicle (V2V) communication. CACC is a crucial ingredient for numerous autonomous vehicle functionalities including platooning, distributed route management, etc. Unfortunately, malicious V2V communications can subvert CACC, leading to string instability and road accidents. In this paper, we develop a novel resiliency infrastructure, RACCON, for detecting and mitigating V2V attacks on CACC. RACCON uses machine learning to develop an on-board prediction model that captures anomalous vehicular responses and performs mitigation in real time. RACCON-enabled vehicles can exploit the high efficiency of CACC without compromising safety, even under potentially adversarial scenarios. We present extensive experimental evaluation to demonstrate the efficacy of RACCON.
翻译:合作调适巡航控制(CACC)是一项基本的连通车辆应用,通过利用车辆对车辆的通信,扩展了适应性巡航控制(V2V),ACACC是包括排队、分布式路线管理等在内的许多自主车辆功能的关键组成部分。 不幸的是,恶意V2V通信可能颠覆CACC, 导致连线不稳定和道路事故。在本文件中,我们开发了一种新的恢复性基础设施(RACCON),用于探测和减轻对CACCV的V2V攻击。RACCON利用机器学习开发一个机载预测模型,捕捉反常车辆反应并实时进行缓解。RACCON驱动的车辆可以在不危及安全的情况下利用CACC的高效,即使有可能出现对抗性的情况。我们提出了广泛的实验性评价,以展示RACCON的功效。