Although Deep neural networks (DNNs) are being pervasively used in vision-based autonomous driving systems, they are found vulnerable to adversarial attacks where small-magnitude perturbations into the inputs during test time cause dramatic changes to the outputs. While most of the recent attack methods target at digital-world adversarial scenarios, it is unclear how they perform in the physical world, and more importantly, the generated perturbations under such methods would cover a whole driving scene including those fixed background imagery such as the sky, making them inapplicable to physical world implementation. We present PhysGAN, which generates physical-world-resilient adversarial examples for mislead-ing autonomous driving systems in a continuous manner. We show the effectiveness and robustness of PhysGAN via extensive digital and real-world evaluations. Digital experiments show that PhysGAN is effective for various steer-ing models and scenes, which misleads the average steer-ing angle by up to 23.06 degrees under various scenarios. The real-world studies further demonstrate that PhysGAN is sufficiently resilient in practice, which misleads the average steering angle by up to 19.17 degrees. We compare PhysGAN with a set of state-of-the-art baseline methods including several of our self-designed ones, which further demonstrate the robustness and efficacy of our approach. We also show that PhysGAN outperforms state-of-the-art baseline methods To the best of our knowledge, PhysGANis probably the first technique of generating realistic and physical-world-resilient adversarial examples for attacking common autonomous driving scenarios.


翻译:虽然深心神经网络(DNNS)被广泛用于基于视觉的自主驱动系统,但发现它们很容易受到对抗性攻击,测试期间输入的输入中出现小磁振动,导致产出发生巨大变化。虽然最近的大多数攻击方法都针对数字-世界对立情景,但尚不清楚这些方法在物理世界中如何运作,更重要的是,在这种方法下产生的扰动将覆盖整个驱动场,包括固定的背景图像,如天空,使其无法适用于物理世界的实施。我们展示PhysGAN,它产生物理-世界弹性的对抗性范例,很可能持续地误导自主驱动系统。我们通过广泛的数字和现实世界评估来显示PhysGAN的实效和稳健性,数字实验表明PhysGAN对各种方向模型和场景的效果有效,在各种假设下将平均方向误差引至23.06度。现实世界研究进一步显示PhysperGAN在实践上有足够的弹性,从而将普通方向基线模型向19G级展示了我们的平均方向的自我效率。我们将一些普通的自我定位方法向19.17度展示了我们的最佳方向的自我水平。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
生成对抗网络GANs学习路线
专知
36+阅读 · 2019年6月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Generative Adversarial Networks: A Survey and Taxonomy
Arxiv
10+阅读 · 2018年3月23日
Arxiv
4+阅读 · 2015年3月20日
VIP会员
相关VIP内容
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
生成对抗网络GANs学习路线
专知
36+阅读 · 2019年6月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员