We revisit the task of computing the span of the top $r$ singular vectors $u_1, \ldots, u_r$ of a matrix under differential privacy. We show that a simple and efficient algorithm -- based on singular value decomposition and standard perturbation mechanisms -- returns a private rank-$r$ approximation whose error depends only on the \emph{rank-$r$ coherence} of $u_1, \ldots, u_r$ and the spectral gap $\sigma_r - \sigma_{r+1}$. This resolves a question posed by Hardt and Roth~\cite{hardt2013beyond}. Our estimator outperforms the state of the art -- significantly so in some regimes. In particular, we show that in the dense setting, it achieves the same guarantees for single-spike PCA in the Wishart model as those attained by optimal non-private algorithms, whereas prior private algorithms failed to do so. In addition, we prove that (rank-$r$) coherence does not increase under Gaussian perturbations. This implies that any estimator based on the Gaussian mechanism -- including ours -- preserves the coherence of the input. We conjecture that similar behavior holds for other structured models, including planted problems in graphs. We also explore applications of coherence to graph problems. In particular, we present a differentially private algorithm for Max-Cut and other constraint satisfaction problems under low coherence assumptions.


翻译:我们重新审视在差分隐私约束下计算矩阵前 $r$ 个奇异向量 $u_1, \\ldots, u_r$ 张成空间的任务。我们证明,一种基于奇异值分解和标准扰动机制的简单高效算法能够返回一个私有秩-$r$ 近似,其误差仅取决于 $u_1, \\ldots, u_r$ 的\\emph{秩-$r$ 相干性}以及谱间隙 $\\sigma_r - \\sigma_{r+1}$。这解决了 Hardt 和 Roth~\\cite{hardt2013beyond} 提出的问题。我们的估计器优于现有技术——在某些机制中显著更优。具体而言,我们表明在稠密设置下,该算法在 Wishart 模型中为单峰主成分分析实现了与最优非私有算法相同的保证,而先前的私有算法未能做到这一点。此外,我们证明(秩-$r$)相干性在高斯扰动下不会增加。这意味着任何基于高斯机制的估计器——包括我们的方法——都能保持输入的相干性。我们推测类似行为也适用于其他结构化模型,包括图中的植入问题。我们还探讨了相干性在图问题中的应用。特别地,我们提出了一种在低相干性假设下用于最大割问题及其他约束满足问题的差分隐私算法。

0
下载
关闭预览

相关内容

在统计中,主成分分析(PCA)是一种通过最大化每个维度的方差来将较高维度空间中的数据投影到较低维度空间中的方法。给定二维,三维或更高维空间中的点集合,可以将“最佳拟合”线定义为最小化从点到线的平均平方距离的线。可以从垂直于第一条直线的方向类似地选择下一条最佳拟合线。重复此过程会产生一个正交的基础,其中数据的不同单个维度是不相关的。 这些基向量称为主成分。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2022年11月21日
Arxiv
31+阅读 · 2021年6月30日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Arxiv
14+阅读 · 2018年5月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
18+阅读 · 2022年11月21日
Arxiv
31+阅读 · 2021年6月30日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Arxiv
14+阅读 · 2018年5月15日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员