We study the problem of constructing coresets for $(k, z)$-clustering when the input dataset is corrupted by stochastic noise drawn from a known distribution. In this setting, evaluating the quality of a coreset is inherently challenging, as the true underlying dataset is unobserved. To address this, we investigate coreset construction using surrogate error metrics that are tractable and provably related to the true clustering cost. We analyze a traditional metric from prior work and introduce a new error metric that more closely aligns with the true cost. Although our metric is defined independently of the noise distribution, it enables approximation guarantees that scale with the noise level. We design a coreset construction algorithm based on this metric and show that, under mild assumptions on the data and noise, enforcing an $\varepsilon$-bound under our metric yields smaller coresets and tighter guarantees on the true clustering cost than those obtained via classical metrics. In particular, we prove that the coreset size can improve by a factor of up to $\mathrm{poly}(k)$, where $n$ is the dataset size. Experiments on real-world datasets support our theoretical findings and demonstrate the practical advantages of our approach.


翻译:本文研究在输入数据集受到已知分布随机噪声污染时,为$(k, z)$聚类问题构建核心集的方法。在此设定下,由于真实底层数据集不可观测,评估核心集的质量具有本质上的挑战性。为解决该问题,我们研究使用代理误差度量进行核心集构建,这些度量在计算上可行且与真实聚类成本存在可证明的关联。我们分析了先前工作中提出的传统度量,并引入了一种与真实成本更紧密对齐的新误差度量。尽管我们的度量定义独立于噪声分布,但它能够获得随噪声水平变化的近似保证。基于此度量,我们设计了一种核心集构建算法,并证明在数据和噪声的温和假设下,通过我们的度量施加$\varepsilon$界约束,相较于经典度量方法,能够获得更小的核心集以及对真实聚类成本更紧的保证。特别地,我们证明核心集规模最多可改善$\mathrm{poly}(k)$倍,其中$n$为数据集大小。在真实数据集上的实验验证了我们的理论发现,并证明了所提方法的实际优势。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2023年8月28日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
11+阅读 · 2019年4月15日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Exploring Visual Relationship for Image Captioning
Arxiv
15+阅读 · 2018年9月19日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
11+阅读 · 2023年8月28日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
11+阅读 · 2019年4月15日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Exploring Visual Relationship for Image Captioning
Arxiv
15+阅读 · 2018年9月19日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员