In this work, we propose a learning approach for 3D dynamic bipedal walking when footsteps are constrained to stepping stones. While recent work has shown progress on this problem, real-world demonstrations have been limited to relatively simple open-loop, perception-free scenarios. Our main contribution is a more advanced learning approach that enables real-world demonstrations, using the Cassie robot, of closed-loop dynamic walking over moderately difficult stepping-stone patterns. Our approach first uses reinforcement learning (RL) in simulation to train a controller that maps footstep commands onto joint actions without any reference motion information. We then learn a model of that controller's capabilities, which enables prediction of feasible footsteps given the robot's current dynamic state. The resulting controller and model are then integrated with a real-time overhead camera system for detecting stepping stone locations. For evaluation, we develop a benchmark set of stepping stone patterns, which are used to test performance in both simulation and the real world. Overall, we demonstrate that sim-to-real learning is extremely promising for enabling dynamic locomotion over stepping stones. We also identify challenges remaining that motivate important future research directions.
翻译:在这项工作中,我们建议对3D动态双足行走的学习方法,当脚步受制时,三维动态双脚步步步步步步步步脚步。虽然最近的工作表明在这个问题上取得了进展,但现实世界的示范活动仅限于相对简单的开放环,没有概念的情景。我们的主要贡献是,利用Cassi机器人,以闭环动态方式在中度困难的踏脚石模式上进行真实世界演示。我们的方法首先在模拟中利用强化学习(RL)来训练一个控制器,该控制器将脚步指令映射成联合行动,而没有任何参考运动信息。我们随后学习了该控制器的能力模型,以便能够预测机器人当前动态状态下可行的脚步。由此产生的控制器和模型随后与实时高端摄像系统相结合,用于探测踏脚石位置。为了评估,我们制定了一套踏脚步石模式基准,用于测试模拟和真实世界的性能。总体而言,我们证明模拟到真实的学习非常有希望使脚步动动跳板超越任何参考运动信息。我们还确定了未来重要研究方向的剩余挑战。