Recognizing 3D part instances from a 3D point cloud is crucial for 3D structure and scene understanding. Several learning-based approaches use semantic segmentation and instance center prediction as training tasks and fail to further exploit the inherent relationship between shape semantics and part instances. In this paper, we present a new method for 3D part instance segmentation. Our method exploits semantic segmentation to fuse nonlocal instance features, such as center prediction, and further enhances the fusion scheme in a multi- and cross-level way. We also propose a semantic region center prediction task to train and leverage the prediction results to improve the clustering of instance points. Our method outperforms existing methods with a large-margin improvement in the PartNet benchmark. We also demonstrate that our feature fusion scheme can be applied to other existing methods to improve their performance in indoor scene instance segmentation tasks.
翻译:承认三维点云层的三维部分实例对于 3D 结构和场景理解至关重要。 几个基于学习的方法使用语义分割和实例中心预测作为培训任务,未能进一步利用形状语义和部分实例之间的内在关系。 在本文中,我们提出了一个3D部分语义分割的新方法。 我们的方法利用语义分割来融合非本地实例特征,例如中心预测,并进一步以多层次和跨层次的方式加强聚合计划。 我们还提议一个语义区域中心预测任务,以培训和利用预测结果来改进实例点的组合。 我们的方法超越了现有方法,在 PartNet 基准中实现了大边界改进。 我们还表明,我们的特征融合计划可以应用于其他现有的方法,以改善其在室内现场分割任务中的性能。