As Evolutionary Dynamics moves from the realm of theory into application, algorithms are needed to move beyond simple models. Yet few such methods exist in the literature. Ecological and physiological factors are known to be central to evolution in realistic contexts, but accounting for them generally renders problems intractable to existing methods. We introduce a formulation of evolutionary games which accounts for ecology and physiology by modeling both as computations and use this to analyze the problem of directed evolution via methods from Reinforcement Learning. This combination enables us to develop first-of-their-kind results on the algorithmic problem of learning to control an evolving population of cells. We prove a complexity bound on eco-evolutionary control in situations with limited prior knowledge of cellular physiology or ecology, give the first results on the most general version of the mathematical problem of directed evolution, and establish a new link between AI and biology.
翻译:暂无翻译