This paper introduces a framework of Constrained Mean-Field Games (CMFGs), where each agent solves a constrained Markov decision process (CMDP). This formulation captures scenarios in which agents' strategies are subject to feasibility, safety, or regulatory restrictions, thereby extending the scope of classical mean field game (MFG) models. We first establish the existence of CMFG equilibria under a strict feasibility assumption, and we further show uniqueness under a classical monotonicity condition. To compute equilibria, we develop Constrained Mean-Field Occupation Measure Optimization (CMFOMO), an optimization-based scheme that parameterizes occupation measures and shows that finding CMFG equilibria is equivalent to solving a single optimization problem with convex constraints and bounded variables. CMFOMO does not rely on uniqueness of the equilibria and can approximate all equilibria with arbitrary accuracy. We further prove that CMFG equilibria induce $O(1 / \sqrt{N})$-Nash equilibria in the associated constrained $N$-player games, thereby extending the classical justification of MFGs as approximations for large but finite systems. Numerical experiments on a modified Susceptible-Infected-Susceptible (SIS) epidemic model with various constraints illustrate the effectiveness and flexibility of the framework.


翻译:本文提出了一种约束平均场博弈(CMFGs)框架,其中每个智能体求解一个约束马尔可夫决策过程(CMDP)。该公式化方法捕捉了智能体策略受可行性、安全性或监管限制的场景,从而扩展了经典平均场博弈(MFG)模型的范围。我们首先在严格可行性假设下建立了CMFG均衡的存在性,并进一步证明在经典单调性条件下均衡的唯一性。为计算均衡,我们开发了约束平均场占用测度优化(CMFOMO),这是一种基于优化的方案,通过参数化占用测度,并证明寻找CMFG均衡等价于求解一个具有凸约束和有界变量的单一优化问题。CMFOMO不依赖于均衡的唯一性,并能以任意精度逼近所有均衡。我们进一步证明,CMFG均衡在相关的约束$N$人博弈中诱导出$O(1 / \sqrt{N})$-纳什均衡,从而扩展了MFG作为大型但有限系统近似解的经典合理性。在具有多种约束的改进型易感-感染-易感(SIS)流行病模型上进行的数值实验,说明了该框架的有效性和灵活性。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
17+阅读 · 2024年12月27日
Arxiv
11+阅读 · 2018年4月8日
Arxiv
14+阅读 · 2018年4月6日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
17+阅读 · 2024年12月27日
Arxiv
11+阅读 · 2018年4月8日
Arxiv
14+阅读 · 2018年4月6日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员