Clear identification of bone structures is crucial for ultrasound-guided lumbar interventions, but it can be challenging due to the complex shapes of the self-shadowing vertebra anatomy and the extensive background speckle noise from the surrounding soft tissue structures. Therefore, we propose to use a patch-like wearable ultrasound solution to capture the reflective bone surfaces from multiple imaging angles and create 3D bone representations for interventional guidance. In this work, we will present our method for estimating the vertebra bone surfaces by using a spatiotemporal U-Net architecture learning from the B-Mode image and aggregated feature maps of hand-crafted filters. The methods are evaluated on spine phantom image data collected by our proposed miniaturized wearable "patch" ultrasound device, and the results show that a significant improvement on baseline method can be achieved with promising accuracy. Equipped with this surface estimation framework, our wearable ultrasound system can potentially provide intuitive and accurate interventional guidance for clinicians in augmented reality setting.
翻译:清晰地识别骨骼结构对于超声波制导腰椎干预至关重要,但由于自我阴影脊椎解剖的复杂形状以及周围软组织结构中广泛背景的细微噪音,因此,我们提议使用一个类似补丁磨损的超声波溶液从多个成像角度捕捉反射骨表面,并为干预性指导创建3D骨表示器。 在这项工作中,我们将提出我们估算脊椎骨表面的方法,方法是利用从B-Mode图像和手制过滤器综合地貌图中学习的超时空 U-Net结构。这些方法是在我们提议的微型磨损性“匹配”超声波设备所收集的脊椎形图像数据上进行评估的,结果显示,基线方法的显著改进可以有希望的准确性。根据这一表面估计框架,我们可磨损的超声波系统可以在增强现实的设置过程中为临床人员提供直观和准确的干预指导。