Optimal transport (OT) is a framework that can guide the design of efficient resource allocation strategies in a network of multiple sources and targets. This paper applies discrete OT to a swarm of UAVs in a novel way to achieve appropriate task allocation and execution. Drone swarm deployments already operate in multiple domains where sensors are used to gain knowledge of an environment [1]. Use cases such as, chemical and radiation detection, and thermal and RGB imaging create a specific need for an algorithm that considers parameters on both the UAV and waypoint side and allows for updating the matching scheme as the swarm gains information from the environment. Additionally, the need for a centralized planner can be removed by using a distributed algorithm that can dynamically update based on changes in the swarm network or parameters. To this end, we develop a dynamic and distributed OT algorithm that matches a UAV to the optimal waypoint based on one parameter at the UAV and another parameter at the waypoint. We show the convergence and allocation of the algorithm through a case study and test the algorithm's effectiveness against a greedy assignment algorithm in simulation.
翻译:最佳运输(OT)是一个框架,可以指导设计由多种来源和目标组成的网络的有效资源分配战略。本文件将离散的 OT 应用于大批无人驾驶航空器,以新的方式实现适当的任务分配和执行。无人驾驶航空器的群落部署已经在多个领域运作,其中传感器被用来获取环境知识[1]。使用化学和辐射探测以及热和RGB成像等案例,就产生了一种具体需要,一种算法,这种算法既考虑无人驾驶航空器的参数,又考虑路点侧,并允许更新匹配方案,作为从环境中获得的群落信息。此外,可以通过使用分布式算法,根据温流网络或参数的变化动态更新,消除集中规划器的需要。为此,我们开发一种动态和分布式的OT算法,根据无人驾驶航空器的一个参数和路点上的另一个参数,将UAV与最佳的路径匹配。我们通过案例研究来显示算法的趋同和分配情况,并测试算法在模拟中相对于贪婪分配算法的有效性。