In this work, we propose a Physics-Informed Deep Diffusion magnetic resonance imaging (DWI) reconstruction method (PIDD). PIDD contains two main components: The multi-shot DWI data synthesis and a deep learning reconstruction network. For data synthesis, we first mathematically analyze the motion during the multi-shot data acquisition and approach it by a simplified physical motion model. The motion model inspires a polynomial model for motion-induced phase synthesis. Then, lots of synthetic phases are combined with a few real data to generate a large amount of training data. For reconstruction network, we exploit the smoothness property of each shot image phase as learnable convolution kernels in the k-space and complementary sparsity in the image domain. Results on both synthetic and in vivo brain data show that, the proposed PIDD trained on synthetic data enables sub-second ultra-fast, high-quality, and robust reconstruction with different b-values and undersampling patterns.
翻译:在这项工作中,我们建议采用物理成构的深扩散磁共振成像(DWI)重建方法。PIDD包含两个主要组成部分:多发DWI数据合成和一个深层学习重建网络。在数据合成方面,我们首先从数学角度分析多发数据采集过程中的动作,然后以简化物理运动模型接近它。运动模型激发了运动引发的阶段合成的多元模型。随后,许多合成阶段与一些真实数据相结合,以生成大量培训数据。在重建网络中,我们利用每个拍摄图像阶段的平稳性能作为K空间和图像领域互补的可学习性融合内核。合成和活性脑数据的结果显示,拟议的合成数据开发模型能够以不同的双值和下标度模式进行次二次超快、高质量和有力的重建。