In this paper, we present a drone-based delivery system that assumes to deal with two different mixed-areas, i.e., rural and urban. In these mixed-areas, called EM-grids, the distances are measured with two different metrics, and the shortest path between two destinations concatenates the Euclidean and Manhattan metrics. Due to payload constraints, the drone serves a single customer at a time returning back to the dispatching point (DP) after each delivery to load a new parcel for the next customer. In this paper, we present the 1-Median Euclidean-Manhattan grid Problem (MEMP) for EM-grids, whose goal is to determine the drone's DP position that minimizes the sum of the distances between all the locations to be served and the point itself. We study the MEMP on two different scenarios, i.e., one in which all the customers in the area need to be served (full-grid) and another one where only a subset of these must be served (partial-grid). For the full-grid scenario we devise optimal, approximation, and heuristic algorithms, while for the partial-grid scenario we devise optimal and heuristic algorithms. Eventually, we comprehensively evaluate our algorithms on generated synthetic and quasi-real data.
翻译:在本文中,我们展示了一个基于无人机的运载系统,它假定可以处理两个不同的混合地区,即农村和城市。在这些称为EM-grid的混合地区,用两种不同的度量测量距离,两个目的地之间的最短路径是Euclidean和曼哈顿等量。由于有效载荷限制,无人机在每次交付后返回发送点(DP)为下一个客户装载新包裹时为单一客户服务。在本文中,我们为EM-grid提供1-Median Euclidean-Manhattan电网问题(MEMP),其目标是确定无人机的DP位置,将所服务的所有地点和点本身之间的距离总和最小化。我们根据两种不同的假设研究MEMP,即该地区所有客户都需要服务(全电网),而另一个假设只需要为这些客户的一组服务(部分电网 ) 。对于全电网电网电网的电网电网电网电网的电网电网问题(MEMP),目的是确定无人机的DP位置,即尽可能减少所有地点和地点之间的距离和点本身之间的距离。我们所要达到的最佳、最接近、最接近、最接近和最接近的合成的算。我们所生成,我们所制作的合成的模型,我们所制作的最佳和最理想的合成的合成的合成的模型。</s>