We show how to solve time-harmonic wave scattering problems on unbounded domains without truncation. The technique, first developed in numerical relativity for time-domain wave equations, maps the unbounded domain to a bounded domain and scales out the known oscillatory decay towards infinity. We design a null infinity layer that corresponds to the infinite exterior domain and restricts the transformations to an annular domain. The method does not require the local Green function. Therefore we can use it to solve Helmholtz equations with variable coefficients and certain nonlinear source terms. The method's main advantages are the exact treatment of the local boundary and access to radiative fields at infinity. The freedom in the transformations allows us to choose parameters adapted to high-frequency wave propagation in the exterior domain. We demonstrate the efficiency of the technique in one- and two-dimensional numerical examples.
翻译:我们展示了如何在无约束域中解决时间调和波浪散落的问题,而没有脱轨。 技术首先以时间- 域波方程式的数值相对论开发, 将无约束域映射为受约束域, 并将已知的血管衰变向无限度。 我们设计了一个与无限外部域相对应的无无限层, 并将转换限制为废弃域。 该方法不需要本地的绿色功能 。 因此, 我们可以用它用变量系数和某些非线性源词来解析赫尔姆霍尔茨方程式。 该方法的主要优点是精确处理本地边界, 以及在无限度上进入辐射区。 变迁中的自由允许我们选择适合外部域高频波传播的参数。 我们用一维和二维数字示例来展示技术的效率 。