We show how to solve time-harmonic wave scattering problems on unbounded domains without truncation. The technique, first developed in numerical relativity for time-domain wave equations, maps the unbounded domain to a bounded domain and scales out the known oscillatory decay towards infinity. We design a null infinity layer that corresponds to the infinite exterior domain and restricts the transformations to an annular domain. The method does not require the local Green function. Therefore we can use it to solve Helmholtz equations with variable coefficients and certain nonlinear source terms. The method's main advantages are the exact treatment of the local boundary and access to radiative fields at infinity. The freedom in the transformations allows us to choose parameters adapted to high-frequency wave propagation in the exterior domain. We demonstrate the efficiency of the technique in one- and two-dimensional numerical examples.


翻译:我们展示了如何在无约束域中解决时间调和波浪散落的问题,而没有脱轨。 技术首先以时间- 域波方程式的数值相对论开发, 将无约束域映射为受约束域, 并将已知的血管衰变向无限度。 我们设计了一个与无限外部域相对应的无无限层, 并将转换限制为废弃域。 该方法不需要本地的绿色功能 。 因此, 我们可以用它用变量系数和某些非线性源词来解析赫尔姆霍尔茨方程式。 该方法的主要优点是精确处理本地边界, 以及在无限度上进入辐射区。 变迁中的自由允许我们选择适合外部域高频波传播的参数。 我们用一维和二维数字示例来展示技术的效率 。

0
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
53+阅读 · 2020年9月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
Diganta Misra等人提出新激活函数Mish,在一些任务上超越RuLU
专知会员服务
15+阅读 · 2019年10月15日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员