We analyse a class of time discretizations for solving the Gross-Pitaevskii equation at low-regularity on an arbitrary Lipschitz domain $\Omega \subset \mathbb{R}^d$, $d \le 3$, with a non-smooth potential. We show that these schemes, together with their optimal local error structure, allow for convergence under lower regularity assumptions on both the solution and the potential than is required by classical methods, such as splitting or exponential integrator methods. Moreover, we show convergence in the case of periodic boundary conditions, in any fractional positive Sobolev space $H^{r}$, $r \ge 0$ beyond the more typical $L^2$-error analysis.
翻译:我们分析了一种时间分解的类别,以在独断独断的Lipschitz域($\Omega\subset \ mathbb{R ⁇ d$,$d $\le 3$)上以低常规方式解决Gross-Pitaevskii方程式问题,这种分解具有非悬浮潜力。我们表明,这些办法及其最佳的本地误差结构,使得在较常规的假设下,在解决办法和潜力方面,如分解或指数集成法等传统方法所要求的办法下,可以实现趋同。此外,在定期边界条件下,在任何分数正索博列尔夫空间($H ⁇ },$/ge0美元超过典型的$L2美元-erors分析之外,我们显示了定期边界条件的趋同。