Two main concepts studied in machine learning theory are generalization gap (difference between train and test error) and excess risk (difference between test error and the minimum possible error). While information-theoretic tools have been used extensively to study the generalization gap of learning algorithms, the information-theoretic nature of excess risk has not yet been fully investigated. In this paper, some steps are taken toward this goal. We consider the frequentist problem of minimax excess risk as a zero-sum game between the algorithm designer and the world. Then, we argue that it is desirable to modify this game in a way that the order of play can be swapped. We then prove that, under some regularity conditions, if the world and designer can play randomly the duality gap is zero and the order of play can be changed. In this case, a Bayesian problem surfaces in the dual representation. This makes it possible to utilize recent information-theoretic results on minimum excess risk in Bayesian learning to provide bounds on the minimax excess risk. We demonstrate the applicability of the results by providing information theoretic insight on two important classes of problems: classification when the hypothesis space has finite VC-dimension, and regularized least squares.


翻译:在机器学习理论中研究的两个主要概念是一般化差距(火车与测试错误之间的差异)和超风险(测试错误与最低可能错误之间的差异)。虽然信息理论工具被广泛用于研究学习算法的通用差距,但超重风险的信息理论性质尚未得到充分调查。在本文件中,为实现这一目标采取了一些步骤。我们认为小型最大超重风险的常见问题是算法设计师和世界之间的零和零和游戏。然后,我们认为,有必要修改这个游戏,使游戏的顺序能够转换。然后,我们证明,在某些常规条件下,如果世界和设计师可以随机地玩双差,那么,游戏的顺序是可以改变的。在本案中,巴伊斯问题表面是双重的。这样,我们就可以利用最近关于巴伊斯学习中最低超重风险的信息理论结果,提供最小超重风险的界限。我们通过在两个重要的空间类别上提供最小的理论性洞察力洞察力,在常规空间问题分类时,我们展示了结果的可适用性。</s>

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
22+阅读 · 2021年12月19日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
13+阅读 · 2021年3月29日
Arxiv
11+阅读 · 2021年3月25日
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员